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Mapped Regular Pavings

Main Idea & Motivation

Extending Arithmetic:
reals→ intervals→ mapped partitions of interval

1. arithmetic over reals

2. naturally extends to
arithmetic over intervals

3. Our Main Idea:
– is to further naturally extend to
arithmetic over mapped partitions of an interval called
Mapped Regular Pavings (MRPs)

4. – by exploiting the algebraic structure of partitions formed
by finite-rooted-binary (frb) trees

5. – thereby provide algorithms for several inclusion algebras
over frb tree partitions
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Mapped Regular Pavings

Main Idea & Motivation

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Arithmetic with coloured spaces.
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Mapped Regular Pavings

Main Idea & Motivation

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Intersection of enclosures of two hollow spheres.
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Mapped Regular Pavings

Main Idea & Motivation

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Histogram averaging.
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Mapped Regular Pavings

Main Idea & Motivation

Why MRPs?

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in Y to be
extended point-wise to Y-MRPs.

1. Arithmetic on piece-wise constant functions and
interval-valued functions;

2. Exploiting the tree-based structure to obtain interval
enclosures of real-valued functions efficiently

3. Statistical set-processing operations like marginal density,
conditional density and highest coverage regions,
visualization, etc
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Mapped Regular Pavings

Theory of Regular Pavings (RPs)

An RP tree a root interval xρ ∈ IRd

The regularly paved boxes of xρ can be represented by nodes of
finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval xρ ∈ IR2
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By this “RP Peano’s curve” frb-trees encode paritions of xρ ∈ IRd
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Mapped Regular Pavings

Theory of Regular Pavings (RPs)

Algebraic Structure and Combinatorics of RPs
Leaf-depth encoded RPs

There are Ck RPs with k splits

C0 = 1
C1 = 1
C2 = 2
C3 = 5
C4 = 14
C5 = 42
. . . = . . .

Ck =
(2k)!

(k+1)!k!
. . . = . . .
C15 = 9694845
. . . = . . .
C20 = 6564120420
. . . = . . . 18 / 62



Mapped Regular Pavings

Theory of Regular Pavings (RPs)

Hasse (transition) Diagram of Regular Pavings

Transition diagram over S0:3 with split/reunion operations

RS, W.Taylor and G.Teng, Catalan Coefficients, Sequence A185155 in The On-Line Encyclopedia of Integer

Sequences, 2012, http://oeis.org
19 / 62
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Mapped Regular Pavings

Theory of Regular Pavings (RPs)

Hasse (transition) Diagram of Regular Pavings

Transition diagram over S0:4 with split/reunion operations

1. The above state space is denoted by S0:4

2. Number of RPs with k splits is the Catalan number Ck

3. There is more than one way to reach a RP by k splits
4. Randomized enclosure algorithms are Markov chains on

S0:∞
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Mapped Regular Pavings

Theory of Regular Pavings (RPs)

RPs are closed under union operations
s(1) ∪ s(2) = s is union of two RPs s(1) and s(2) of xρ ∈ R2.
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Lemma 1: The algebraic structure of frb-trees (underlying
Thompson’s group) is closed under union operations.

Proof: by a “transparency overlay process” argument (cf. Meier
2008).

s(1) ∪ s(2) = s is union of two RPs s(1) and s(2) of xρ ∈ R2.
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Mapped Regular Pavings

Theory of Regular Pavings (RPs)

Algorithm 1: RPUnion(ρ(1), ρ(2))

input : Root nodes ρ(1) and ρ(2) of RPs s(1) and s(2) , respectively, with root box x
ρ(1) = x

ρ(2)

output : Root node ρ of RP s = s(1) ∪ s(2)

if IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
ρ← Copy(ρ(1))
return ρ

end

else if !IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
ρ← Copy(ρ(1))
return ρ

end

else if IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
ρ← Copy(ρ(2))
return ρ

end

else
!IsLeaf(ρ(1)) & !IsLeaf(ρ(2))

end
Make ρ as a node with xρ ← x

ρ(1)

Graft onto ρ as left child the node RPUnion(ρ(1)L, ρ(2)L)

Graft onto ρ as right child the node RPUnion(ρ(1)R, ρ(2)R)
return ρ

Note: this is not the minimal union of the (Boolean mapped) RPs of Jaulin et. al. 2001
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Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Dfn: Mapped Regular Paving (MRP)

I Let s ∈ S0:∞ be an RP with root node ρ and root box
xρ ∈ IRd

I and let Y be a non-empty set.
I Let V(s) and L(s) denote the sets all nodes and leaf nodes

of s, respectively.
I Let f : V(s)→ Y map each node of s to an element in Y as

follows:
{ρv 7→ fρv : ρv ∈ V(s), fρv ∈ Y} .

I Such a map f is called a Y-mapped regular paving
(Y-MRP).

I Thus, a Y-MRP f is obtained by augmenting each node ρv
of the RP tree s with an additional data member fρv.
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Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs

If Y = R

R-MRP over s221 with xρ = [0,8]
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Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs

If Y = B

B-MRP over s122 with xρ = [0,1]2 (e.g. Jaulin et. al. 2001)
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Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs
If Y = IR
– frb tree representation for interval inclusion algebra

IR-MRP enclosure of the Rosenbrock function with
xρ = [−1,1]2

33 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs

If Y = [0,1]3

– R G B colour maps

[0,1]3-MRP over s3321 with xρ = [0,1]3

34 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs
If Y = Z+ := {0,1,2, ...}
– radar-measured aircraft trajectory data

Z+-MRP trajectory of an aircraft and its tree

35 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Y-MRP Arithmetic
If ? : Y× Y→ Y then we can extend ? point-wise to two
Y-MRPs f and g with root nodes ρ(1) and ρ(2) via
MRPOperate(ρ(1), ρ(2), ?).
This is done using MRPOperate(ρ(1), ρ(2),+)

f g f + g

36 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

R-MRP Addition by MRPOperate(ρ(1), ρ(2),+)

adding two piece-wise constant functions or R-MRPs

37 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

Algorithm 2: MRPOperate(ρ(1), ρ(2), ?)

input : two root nodes ρ(1) and ρ(2) with same root box x
ρ(1) = x

ρ(2) and binary operation ?.

output : the root node ρ of Y-MRP h = f ? g.

Make a new node ρ with box and image
xρ ← x

ρ(1) ; hρ ← f
ρ(1) ? g

ρ(2)

if IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
Make temporary nodes L′, R′

xL′ ← x
ρ(1)L

; xR′ ← x
ρ(1)R

fL′ ← f
ρ(1) , fR′ ← f

ρ(1)

Graft onto ρ as left child the node MRPOperate(L′, ρ(2)L, ?)
Graft onto ρ as right child the node MRPOperate(R′, ρ(2)R, ?)

end

else if !IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
Make temporary nodes L′, R′

xL′ ← x
ρ(2)L

; xR′ ← x
ρ(2)R

gL′ ← g
ρ(2) , gR′ ← g

ρ(2)

Graft onto ρ as left child the node MRPOperate(ρ(1)L, L′, ?)
Graft onto ρ as right child the node MRPOperate(ρ(1)R,R′, ?)

end

else if !IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
Graft onto ρ as left child the node MRPOperate(ρ(1)L, ρ(2)L, ?)

Graft onto ρ as right child the node MRPOperate(ρ(1)R, ρ(2)R, ?)
end
return ρ 38 / 62



Mapped Regular Pavings

Theory of Mapped Regular Pavings (MRPs)

B-MRP arithmetic

Two Boolean-mapped regular pavings A1 and A2 and Boolean
arithmetic operations with + for set union, − for symmetric set

difference, × for set intersection, and ÷ for set difference.

A1 A2 A1 + A2
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Theory of Mapped Regular Pavings (MRPs)

B-MRP arithmetic

Two Boolean-mapped regular pavings A1 and A2 and Boolean
arithmetic operations with + for set union, − for symmetric set

difference, × for set intersection, and ÷ for set difference.

A1 − A2 A1 × A2 A1 ÷ A2
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Mapped Regular Pavings

Randomized Algorithms for IR-MRPs

Example – Prioritised Splitting

inclusion function: g(x) = x2 + (x + 1) sin(10πx)2 cos(3πx)2

priority function: ψ(ρv) = vol (ρv)wid (g(xρv))

To 50 leaves by
RPQEnclose5(ρ,g, ψ, ¯̀ = 50)

To 100 leaves by
RPQEnclose5(ρ,g, ψ, ¯̀ = 100)

41 / 62



Mapped Regular Pavings

Randomized Algorithms for IR-MRPs

Algorithm 3: RPQEnclose5(ρ,g, ψ, ¯̀)

input : ρ, the root node of IR-MRP f with RP s, root box xρ and
f ρ = g(xρ),
ψ : L(s)→ R such that
ψ(ρv) = vol (xρv) (g(xρv)− 0.5 (g(xρvL) + g(xρvR))),
¯̀ the maximum number of leaves.

output : f with modified RP s such that |L(s)| = ¯̀

if |L(s)| < ¯̀ then

ρv← random_sample

(
argmax
ρv∈L(s)

ψ(ρv)

)
Split ρv: 5(ρv) = {ρvL, ρvR} // split the sampled node
f ρvL ← g(2(xρvL))
f ρvR ← g(2(xρvL))
RPQEnclose5(ρ, ψ, ¯̀)

end

42 / 62



Mapped Regular Pavings

Randomized Algorithms for IR-MRPs

Example - Prioritised Splitting Continued
inclusion function: g(x) = x2 + (x + 1) sin(10πx)2 cos(3πx)2

priority function: ψ(ρv) = vol (ρv)wid (g(xρv))

To 50 leaves by
RPQEnclose5(ρ,g, ψ, ¯̀ = 50)

To 100 leaves by
RPQEnclose5(ρ,g, ψ, ¯̀ = 100)

Can we get tighter enclosures using only 50 leaves by propagating the interval hull of 100-leaved IR-MRP up the

tree and then doing a prioritised merging of the cherries? 43 / 62



Mapped Regular Pavings

Randomized Algorithms for IR-MRPs

Hull Propagate up the tree via HullPropagate(ρ)

Algorithm 4: HullPropagate(ρ)

input : ρ, the root node of IR-MRP f with RP s.
output : Modify input MRP f .

if !IsLeaf(ρ) then
HullPropagate(ρL)
HullPropagate(ρR)
f ρ ← f ρL t f ρR

end

By calling HullPropagate(ρ) on our IR-MRP of Example
constructed by RPQEnclose5(ρ,g, ψ, ¯̀ = 100) we would have
tightened the range enclosures of g in the internal nodes.

44 / 62



Mapped Regular Pavings

Randomized Algorithms for IR-MRPs

Prioritised Merging via RPQEnclose4(ρ, ψ, ¯̀′)

Algorithm 5: RPQEnclose4(ρ, ψ, ¯̀′)

input : ρ, the root node of IR-MRP f with RP s, box xρ,
ψ : C(s)→ R as ψ(ρv) = vol (xρv) (f ρv − 0.5 (f ρvL + f ρvR)),
¯̀′ the maximum number of leaves.

output : modified f with RP s such that |L(s)| = ¯̀′ or C(s) = ∅.

if |L(s)| ≥ ¯̀′ & C(s) 6= ∅ then
ρv← random_sample

(
argminρv∈C(s) ψ(ρv)

)
// choose a

random node with smallest ψ
Prune(ρL)
Prune(ρR)
RPQEnclose4(ρ, ψ, ¯̀′)

end
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Randomized Algorithms for IR-MRPs

Example – Split, Propogating & Prune
Yes we can!

RPQEnclose5(ρ, g, ψ, ¯̀ = 100); HullPropagate(ρ); RPQEnclose4(ρ, ψ, ¯̀′ = 50)

46 / 62
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Statistical Applications

I “Nonparametric Density Estimation” with massive metric
data streams

I Stat. Operations: Coverage, Marginal integral and Slice
I Memory-efficient Arithmetic for Air Traffic Co-trajectories
I Life Science Appl.: Animal Migration Track
I Bold untried Idea: Set-valued Arithmetic for Geospatial

Data (Global EQ data)
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Applications of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Problem: Take samples from an unknown density f and consistently
reconstruct f
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Applications of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Approach: Use statistical regular paving to get R-MRP data-adaptive
histogram
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Applications of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Solution: R-MRP histogram averaging allows us to produce a
consistent Bayesian estimate of the density (up to 10 dimensions)
(Teng, Harlow, Lee and S., ACM Trans. Mod. & Comp. Sim., [r. 2] 2012)
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Applications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

R-MRP approximation to Levy density and its coverage regions with
α = 0.9 (light gray), α = 0.5 (dark gray) and α = 0.1 (black)
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Applications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

Marginal densities f {1}(x1) and f {2}(x2) along each coordinate of
R-MRP approximation
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Applications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

The slices of a simple R-MRP in 2D
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Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic”→ dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.)

On a Good Day
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Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic”→ dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.)

Z+-MRP On a Good Day
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Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic”→ dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.)

On a Bad Day
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Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic”→ dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.)

Z+-MRP On a Bad Day
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Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic”→ dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.)

Z+-MRP pattern for Good Day − Bad Day

58 / 62



Mapped Regular Pavings

Conclusions and References

Conclusions
I Y-MRPs provide frb-tree partition arithmetic
I IY-MRPs allow efficient arithmetic for Neumaier’s inclusion

algebras
I IY can be IR for f : IRd → IR
I IY can be IRm for f : IRd → IRm

I IY can be (IR, IRm, IRm2
) for range, gradient & Hessian of

f : IRd → IR
I Other obvious extensions include arithmetic over Taylor

polynomial inclusion algebras
I In general the domain and range of f can be complete

lattices with intervals and bisection operations
I We have seen several statistical applications of Y-MRPs
I CODE: mrs: a C++ class library for statistical set

processing by Bycroft, Harlow, Sainudiin, Teng and York.
59 / 62



Mapped Regular Pavings

Conclusions and References

References

Jaulin, L., Kieffer, M., Didrit, O. & Walter, E. (2001). Applied
interval analysis. London: Springer-Verlag.
Meier, J., Groups, graphs and trees: an introduction to the
geometry of infinite groups, CUP, Cambridge, 2008.
Neumaier, A., Interval methods for systems of equations, CUP,
Cambridge, 1990.
Lugosi, G. and Nobel, A. (1996). Consistency of data-driven
histogram methods for density estimation and classification.
The Annals of Statistics 24 687–706.
Sainudiin, R. and York, T. L. (2005). An Auto-validating
Rejection Sampler. BSCB Dept. Technical Report BU-1661-M,
Cornell University, Ithaca, New York.

60 / 62



Mapped Regular Pavings

Conclusions and References

Acknowledgements

I RS’s external consulting revenues from the New Zealand
Ministry of Tourism

I WT’s Swedish Research Council Grant 2008-7510 that
enabled RS’s visits to Uppsala in 2006 and 2009

I Erskine grant from University of Canterbury that enabled
WT’s visit to Christchurch in 2011

I University of Canterbury MSc Scholarship to JH.

61 / 62



Mapped Regular Pavings

Conclusions and References

Thank you!
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