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Mapped Regular Pavings

LMain Idea & Motivation

Extending Arithmetic:

reals — intervals — mapped partitions of interval

1.
2.

arithmetic over reals

naturally extends to
arithmetic over intervals

Our Main Idea:

— is to further naturally extend to

arithmetic over mapped partitions of an interval called
Mapped Regular Pavings (MRPs)

— by exploiting the algebraic structure of partitions formed
by finite-rooted-binary (frb) trees

— thereby provide algorithms for several inclusion algebras
over frb tree partitions
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Main Idea & Motivation

L Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Arithmetic with coloured spaces.
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Main Idea & Motivation

L Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Intersection of enclosures of two hollow spheres.
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Mapped Regular Pavings
Main Idea & Motivation

L Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Histogram averaging.
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Main Idea & Motivation
L why MRPs?

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in Y to be
extended point-wise to Y-MRPs.

1. Arithmetic on piece-wise constant functions and
interval-valued functions;
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LMain Idea & Motivation
L Why MRPs?

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in Y to be
extended point-wise to Y-MRPs.

1. Arithmetic on piece-wise constant functions and
interval-valued functions;

2. Exploiting the tree-based structure to obtain interval
enclosures of real-valued functions efficiently

3. Statistical set-processing operations like marginal density,
conditional density and highest coverage regions,
visualization, etc

12 /R2



Mapped Regular Pavings
I—Theory of Regular Pavings (RPs)

An RP tree a root interval x,, € IR?

The regularly paved boxes of x,, can be represented by nodes of
finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:
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The regularly paved boxes of x,, can be represented by nodes of
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LTheory of Regular Pavings (RPs)

An RP tree a root interval x, € ITR?

The regularly paved boxes of x, can be represented by nodes of
finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval x,, € IR?

P
»
P
P
[ ]
L R pLL pRL pRR
p P
pLL pLRpRL pRR

13
pR
LL LR
’ ’ sLRL oLRR

X,LR X)LR | X,RR X,RR

X,LRL
X,LRR

X, XL X,R X R

XL X,LL | X,RL X)L | X,RL

By this “RP Peano’s curve” frb-trees encode paritions of x,, € IR
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LTheory of Regular Pavings (RPs)

Algebraic Structure and Combinatorics of RPs
Leaf-depth encoded RPs

(3,3,2,1)

%

A

i

(1,3,3,2) 2,2,2,2) 2,3,3,1) (1,2,3,3)
There are Ci RPs with k splits
C = 1
¢ = 1 <
C;, = 2
& - 5
G Z 14 Cra)
Cs = 42
o T e < G2
K= w
Cis = 9694845 G2 Gond Gaaed Qa2 (2
Coy = 6564120420
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LTheory of Regular Pavings (RPs)

Hasse (transition) Diagram of Regular Pavings

Transition diagram over Sp.3 with split/reunion operations

s
J\

5221
E 52222

S3321 52331 51332 51233

RS, W.Taylor and G.Teng, Catalan Coefficients, Sequence A185155 in The On-Line Encyclopedia of Integer

Sequences, 2012, http://oeis.org 10/R0
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Mapped Regular Pavings
LTheory of Regular Pavings (RPs)

Hasse (transition) Diagram of Regular Pavings

Transition diagram over Sy.4 with split/reunion operations
D,

The above state space is denoted by Sp.4
Number of RPs with k splits is the Catalan number Cy
There is more than one way to reach a RP by k splits

Randomized enclosure algorithms are Markov chains on
S0:00

Ea S\
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Mapped Regular Pavings
LTheory of Regular Pavings (RPs)

RPs are closed under union operations

s u s = sis union of two RPs s(!) and s of x,, € R2,

X, R

X o)1

pL pR
pLL
pLR pRL )RR
X,LR X,RR
XpLL X )RL
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LTheory of Regular Pavings (RPs)

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying
Thompson’s group) is closed under union operations.

29 /AD



Mapped Regular Pavings
LTheory of Regular Pavings (RPs)

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying
Thompson’s group) is closed under union operations.

Proof: by a “transparency overlay process” argument (cf. Meier
2008).

s u s = sis union of two RPs s() and s of x,, € R2,

[ |
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Mapped Regular Pavings
LTheory of Regular Pavings (RPs)

Algorithm 1: RPUnion(p(", p(®)

input  : Root nodes p(1) and p<2) of RPs s(1) and s(@), respectively, with root box xpm = Xp(z)

output : Root node p of RP s = sy s@
if 1steaf(p(") & Isneat(p®@)then

p + copy(p(")
return p

end

elseif 11stear(p(")) & Isnear(p?)then

p + copy(p(M)
return p

end

else if IsLeaf(p(”) & !IsLeaf(p(z)) then
p + Copy(pt?)

return p
end
else
‘ !IsLeaf(p“)) & !IsLeaf(p(z))
end

Make p as a node with x,, < X (1)

Graft onto p as left child the node RPUnion(p("L, p@L)

Graft onto p as right child the node RPUnion(p(1)R, p(Z)R)
return p

Note: this is not the minimal union of the (Boolean mapped) RPs of Jaulin et. al. 2001
24 /1 R2
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x, € IRY
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LTheory of Mapped Regular Pavings (MRPs)

Dfn: Mapped Regular Paving (MRP)

» Let s € Sp., be an RP with root node p and root box
x, € IRY

» and let Y be a non-empty set.

» Let V(s) and LL(s) denote the sets all nodes and leaf nodes
of s, respectively.
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LTheory of Mapped Regular Pavings (MRPs)

Dfn: Mapped Regular Paving (MRP)

>

Let s € Sg..o be an RP with root node p and root box
x, € IR?
and let Y be a non-empty set.
Let V(s) and LL(s) denote the sets all nodes and leaf nodes
of s, respectively.
Let f : V(s) — Y map each node of sto an elementin Y as
follows:

{pv =ty :pveV(s),fyeY} .
Such a map f is called a Y-mapped regular paving
(Y-MRP).
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LTheory of Mapped Regular Pavings (MRPs)

Dfn: Mapped Regular Paving (MRP)

>

Let s € Sp..o be an RP with root node p and root box

x, € IR?

and let Y be a non-empty set.

Let V(s) and LL(s) denote the sets all nodes and leaf nodes
of s, respectively.

Let f : V(s) — Y map each node of sto an elementin Y as

follows:
{pv =ty pveV(s),fyeY} .

Such a map f is called a Y-mapped regular paving
(Y-MRP).

Thus, a Y-MRP f is obtained by augmenting each node pv
of the RP tree s with an additional data member f,,.

20 /R2



Mapped Regular Pavings
I—Theor of Mapped Regular Pavings (MRPs)
y

Examples of Y-MRPs
fY =R

R-MRP over sp1 with x, = [0, 8]

[02) [2.4) [48)
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Mapped Regular Pavings
I—Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs
fY =B

B-MRP over sj2, with x, = [0, 1]2 (e.g. Jaulin et. al. 2001)

29 /RO



Mapped Regular Pavings
I—Theory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs

fY=IR
— frb tree representation for interval inclusion algebra

IR-MRP enclosure of the Rosenbrock function with
XP = [_17 1]2

22 /R0



Mapped Regular Pavings
I—Theor of Mapped Regular Pavings (MRPs)
y

Examples of Y-MRPs

If Y =[O0, 1]3
— R G B colour maps

[0, 1]*-MRP over s33p¢ with x, = [0, 1]3

24 /R



Mapped Regular Pavings
LTheory of Mapped Regular Pavings (MRPs)

Examples of Y-MRPs
fY=2,:={0,1,2,...}
— radar-measured aircraft trajectory data

Z..-MRP trajectory of an aircraft and its tree

9445

Latitude

1053 1054 1055 1056 1057 1058 1059
Longitude

25 /A2



Mapped Regular Pavings
LTheory of Mapped Regular Pavings (MRPs)

Y-MRP Arithmetic

Ifx:Y x Y — Y then we can extend x point-wise to two
Y-MRPs f and g with root nodes p(!) and p(®) via

MRPOperate(p!), p %),
This is done using MRPOperate(p(), p®, +)

f g f+g

o W
5 B
. — . B
44444447 1 %4
7 2] e &) Bo e B8 Bn h ] @0 @5 B BD 00
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Mapped Regular Pavings
I—Theory of Mapped Regular Pavings (MRPs)

R-MRP Addition by MRPOperate(p), p@), 4)

adding two piece-wise constant functions or R-MRPs

27 /R0



Mapped Regular Pavings
LTheory of Mapped Regular Pavings (MRPs)

Algorithm 2: MRPOperate(p(V), p?) x)

input  :two root nodes p“) and p(z) with same root box Xp(W) = xp(z) and binary operation *.
output : the root node p of Y-MRP h = f x g.

Make a new node p with box and image
Xp xpm; hy, fp(1) * gp(z)

if IsLeaf(p“)) & !IsLeaf(p(z)) then
Make temporary nodes L’, R’
X1 xp“)L;XR/ — Xp(1)R
fr fp(”’ for fp(”

Graft onto p as left child the node MRPOperate(L’, p(Z)L, *)
Graft onto p as right child the node MrRPOperate(R’, p@)R, )
end

elseif IzsLeat(p(V) & IsLeaf(p(®)then
Make temporary nodes L', R’
X\ XF,(Z)L;XR/ «— Xp(z)
97 = 9,2 9 = 9,02
Graft onto p as left child the node MRPOperate(p(1)L, L', %)
Graft onto p as right child the node MRPOperate(p(”R, R, %)

R

end

else if !IsLeaf(p(1)) & !IsLeaf(p(z)) then
Graft onto p as left child the node MRPOperate(p(L, p@L, x)
Graft onto p as right child the node MRPOperate(p(”R, p(z)R, *)
end
return p NQ /R



Mapped Regular Pavings
LTheory of Mapped Regular Pavings (MRPs)

B-MRP arithmetic

Two Boolean-mapped regular pavings Ay and A, and Boolean
arithmetic operations with + for set union, — for symmetric set
difference, x for set intersection, and = for set difference.

Ay Ay Al 4+ A2

29 /R?



Mapped Regular Pavings
LTheory of Mapped Regular Pavings (MRPs)

B-MRP arithmetic

Two Boolean-mapped regular pavings Ay and A, and Boolean
arithmetic operations with + for set union, — for symmetric set
difference, x for set intersection, and = for set difference.

A — A2 Ay x As A+ A
? AT i T S T % ‘T @
o l ‘*_ o5
QD -
Fr g i

40 /R2



Mapped Regular Pavings
I—Randomized Algorithms for IR-MRPs

Example — Prioritised Splitting

inclusion function: g(x) = x? + (x + 1) sin(107x)? cos(37x)>?
priority function: ¢(pv) = vol (pv)wid (g(X,v))

To 50 leaves by To 100 leaves by
RPQEncloseV(p, g, 1, f = 50) RPQEncloseV(p, g, 1, = 100)

41 /82



Mapped Regular Pavings
L Randomized Algorithms for IR-MRPs

Algorithm 3: RPQEncloseV(p, g, v, /)

input : p, the root node of IR-MRP f with RP s, root box x, and

f,=9(x,),
w L(s) — R such that
P(pv) = vol (X,v) (G(Xpv) — 0.5 (g(Xpui) + G(XpvR))),
¢ the maximum number of leaves. B
output : f with modified RP s such that |L(s)| = ¢

if |IL(s)| < £ then

pV + random_sample [ argmax ¢ (pv)
pveL(s)

Split pv: v(pv) = {pvL,pvR} // split the sampled node
fo < 9(0(X )

for < g(0(Xp))

RPQEncloseV(p, ¥, {)

end

49 /89



Mapped Regular Pavings
L Randomized Algorithms for IR-MRPs

Example - Prioritised Splitting Continued
inclusion function: g(x) = x? + (x + 1) sin(107x)? cos(37x)?
priority function: ¥ (pv) = vol (pv)wid (g(X,v))

To 50 leaves by To 100 leaves by
RPQEncloseV(p, d,v,f = 50) RPQEncloseV(p,g,,l = 100)

iew Figure

0 01 02 03 04 05 06 07 08 08 1 0 01 D2 03 04 05 06 07 08 08 1

Can we get tighter enclosures using only 50 leaves by propagating the interval hull of 100-leaved IR-MRP up the

tree and then doing a prioritised merging of the cherries?

AR /R



Mapped Regular Pavings
L Randomized Algorithms for IR-MRPs

Hull Propagate up the tree via Hul1Propagate(p)

Algorithm 4: HullPropagate(p)

input : p, the root node of IR-MRP f with RP s.
output : Modify input MRP f.

if 'IsLeaf(p) then
HullPropagate(pl)
HullPropagate(pR)
fp — fp|_ LJ pr

end

By calling Hul1lPropagate(p) on our IR-MRP of Example
constructed by RPQEncloseV(p, g,1,¢ = 100) we would have
tightened the range enclosures of g in the internal nodes.

a4 /A2



Mapped Regular Pavings
L Randomized Algorithms for IR-MRPs

Prioritised Merging via RPQEnclose”(p, v, (')

Algorithm 5: RPQEnclose®(p, 1, /)

input  : p, the root node of IR-MRP f with RP s, box x,,
Y 1 C(s) — Ras ¢(pv) = vol (X,v) (Foy — 0.5 (FouL + FoR)),
¢' the maximum number of leaves. B

output : modified f with RP s such that |L(s)| = ¢ or C(s) = 0.

if IL(s)| > 7' & C(s) # () then

pV < random_sample (argmin, e w(pv)> // choose a
random node with smallest ¥

Prune(pl)

Prune(pR)

RPQEnclose®(p, 1, ')
end

AE /RO



Mapped Regular Pavings
I—Randomized Algorithms for IR-MRPs

Example — Split, Propogating & Prune

Yes we can! _ R ~
RPQEncloseV (p, g, v, £ = 100); HullPropagate(p); RPQEnclose™ (p, ¥, £ = 50)

AR /RD



Mapped Regular Pavings
LApplications of Mapped Regular Pavings (MRPs)

Statistical Applications

» “Nonparametric Density Estimation” with massive metric
data streams

» Stat. Operations: Coverage, Marginal integral and Slice
» Memory-efficient Arithmetic for Air Traffic Co-trajectories
» Life Science Appl.: Animal Migration Track

» Bold untried Idea: Set-valued Arithmetic for Geospatial
Data (Global EQ data)

A7 /A2



Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Problem: Take samples from an unknown density f and consistently
reconstruct f

AR /RO



Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Approach: Use statistical regular paving to get R-MRP data-adaptive

histogram
P
Ha, =10
#FapL =5 oR@HT,R=5
pL \
HTpL = LplR =3
pLL LR
v / !
pLW/
ToR, .
L |
(a) An SRP tree and its constituents. (b) An SRP histogram and its tree.

49 /R



Mapped Regular Pavings
I—Applicaltions of Mapped Regular Pavings (MRPs)

Nonparametric Density Estimation
Solution: R-MRP histogram averaging allows us to produce a
consistent Bayesian estimate of the density (up to 10 dimensions)

(Teng, Harlow, Lee and S., ACM Trans. Mod. & Comp. Sim., [r. 2] 2012)

Max count 99, 976 loaf boxes.
AE = 0.064322

BN /R?



Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

R-MRP approximation to Levy density and its coverage regions with
a = 0.9 (light gray), « = 0.5 (dark gray) and o = 0.1 (black)

51 /R?



Mapped Regular Pavings
LApplications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

Marginal densities f{'}(x;) and f{2}(x,) along each coordinate of
R-MRP approximation

B2 /A2



Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Coverage, Marginal & Slice Operators of R-MRP

The slices of a simple R-MRP in 2D

BR/ARD



Mapped Regular Pavings
I—Applicaltions of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic” — dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

On a Good Day

[ —————
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Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic” — dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

Z,-MRP On a Good Day

1150 500
450
1100 L4100
350
1050 300
2
H 250
s i
1000 . 200
150
950 100
50
%0 950 1000 1050 1100 1150 1200 0
Longitude
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I—Applicaltions of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic” — dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

On a Bad Day

[ r—
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Mapped Regular Pavings
I—Applications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic” — dynamic air-space
configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)
Z+-MRP On a Bad Day

1

1100 200
1050 150
3
g
k|
1000 i 100
950 |50

900 0
900 950 1000 1050 1100 1150 1200
Lergtude
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LApplications of Mapped Regular Pavings (MRPs)

Air Traffic “Arithmetic” — dynamic air-space

configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

Z.-MRP pattern for Good Day — Bad Day

1150

1100

1050

Latitude

1000

930

¢ 080 0

950 1000 1050 1100 1150
Longitude

500

400

300

200

100

-100
1200

BER/RAD
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LConclusions and References

Conclusions

» Y-MRPs provide frb-tree partition arithmetic

» IY-MRPs allow efficient arithmetic for Neumaier’s inclusion
algebras

» TY can be IR for f : TRY — IR

» IY can be IR™ for f : IRY — IR™

» IY can be (IR, IR™, IR™) for range, gradient & Hessian of
f:IRY — IR

» Other obvious extensions include arithmetic over Taylor
polynomial inclusion algebras

» In general the domain and range of f can be complete
lattices with intervals and bisection operations

» We have seen several statistical applications of Y-MRPs

» CODE: mrs: a C++ class library for statistical set
processing by Bycroft, Harlow, Sainudiin, Teng and York.

BEQ/R?
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Thank you!
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