Jennifer Harlow[†], Raazesh Sainudiin[†] and Warwick Tucker*

[†]Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand *Department of Mathematics, Uppsala University, Uppsala, Sweden

September 23-29 2012,

SCAN'2012, Novosibirsk, Russia

October 15-18 2012,

IPA'2012, Uppsala, Sweden

Main Idea & Motivation Motivating Examples Why MRPs?

Theory of Regular Pavings (RPs)

Theory of Mapped Regular Pavings (MRPs)

Randomized Algorithms for IR-MRPs

Applications of Mapped Regular Pavings (MRPs)

Conclusions and References

 $\textbf{reals} \rightarrow \textbf{intervals} \rightarrow \textbf{mapped partitions of interval}$

1. arithmetic over reals

 $\textbf{reals} \rightarrow \textbf{intervals} \rightarrow \textbf{mapped partitions of interval}$

- 1. arithmetic over reals
- 2. naturally extends to arithmetic over intervals

 $\textbf{reals} \rightarrow \textbf{intervals} \rightarrow \textbf{mapped partitions of interval}$

- 1. arithmetic over reals
- 2. naturally extends to arithmetic over intervals

3. Our Main Idea:

 - is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)

 $\textbf{reals} \rightarrow \textbf{intervals} \rightarrow \textbf{mapped partitions of interval}$

- 1. arithmetic over reals
- 2. naturally extends to arithmetic over intervals
- 3. Our Main Idea:

 is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)

4. – **by** exploiting the *algebraic structure of partitions formed by finite-rooted-binary (frb) trees*

 $\textbf{reals} \rightarrow \textbf{intervals} \rightarrow \textbf{mapped partitions of interval}$

- 1. arithmetic over reals
- 2. naturally extends to arithmetic over intervals
- 3. Our Main Idea:

 is to further naturally extend to arithmetic over mapped partitions of an interval called Mapped Regular Pavings (MRPs)

- 4. **by** exploiting the *algebraic structure of partitions formed by finite-rooted-binary (frb) trees*
- 5. **thereby** provide algorithms for several *inclusion algebras over frb tree partitions*

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Arithmetic with coloured spaces.

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Intersection of enclosures of two hollow spheres.

Motivating Examples

arithmetic from intervals to their frb-tree partitions

Figure: Histogram averaging.

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

1. Arithmetic on piece-wise constant functions and interval-valued functions;

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

- 1. Arithmetic on piece-wise constant functions and interval-valued functions;
- 2. Exploiting the tree-based structure to obtain interval enclosures of real-valued functions efficiently

Why Mapped Regular pavings (MRPs)?

MRPs allow any arithmetic defined over elements in \mathbb{Y} to be extended point-wise to \mathbb{Y} -MRPs.

- 1. Arithmetic on piece-wise constant functions and interval-valued functions;
- 2. Exploiting the tree-based structure to obtain interval enclosures of real-valued functions efficiently
- Statistical set-processing operations like marginal density, conditional density and highest coverage regions, visualization, etc

The regularly paved boxes of \boldsymbol{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

The regularly paved boxes of \boldsymbol{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval $\boldsymbol{x}_{\rho} \in \mathbb{IR}^{1}$

The regularly paved boxes of \boldsymbol{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

The regularly paved boxes of \boldsymbol{x}_{ρ} can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

By this "RP Peano's curve" frb-trees encode paritions of $\boldsymbol{x}_{\rho} \in \mathbb{IR}^{d}$

Mapped Regular Pavings

Algebraic Structure and Combinatorics of RPs

XLL XLR

Leaf-depth encoded RPs

XR

XRL

(3, 3, 2, 1)

(1, 3, 3, 2)

(2, 2, 2, 2)

(2, 3, 3, 1)

(1, 2, 3, 3)

 $\begin{array}{rcrcrc} C_0 & = & 1 \\ C_1 & = & 1 \\ C_2 & = & 2 \\ C_3 & = & 5 \\ C_4 & = & 14 \\ C_5 & = & 42 \\ \cdots & = & \cdots \\ C_k & = & \frac{(2k)!}{(k+1)!k!} \\ \cdots & = & \cdots \\ C_{15} & = & 9694845 \\ \cdots & = & \cdots \\ C_{20} & = & 6564120420 \\ \end{array}$

There are C_k RPs with k splits

Hasse (transition) Diagram of Regular Pavings

RS, W.Taylor and G.Teng, Catalan Coefficients, Sequence A185155 in The On-Line Encyclopedia of Integer

Sequences, 2012, http://oeis.org

Hasse (transition) Diagram of Regular Pavings

Transition diagram over $S_{0:4}$ with split/reunion operations

- 1. The above state space is denoted by $\mathbb{S}_{0:4}$
- 2. Number of RPs with k splits is the Catalan number C_k
- 3. There is more than one way to reach a RP by k splits
- 4. Randomized enclosure algorithms are Markov chains on $\mathbb{S}_{0:\infty}$

Mapped Regular Pavings

- Theory of Regular Pavings (RPs)

RPs are closed under union operations

 $s^{(1)} \cup s^{(2)} = s$ is union of two RPs $s^{(1)}$ and $s^{(2)}$ of $\pmb{x}_{
ho} \in \mathbb{R}^2$.

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson's group) is closed under union operations.

RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson's group) is closed under union operations.

Proof: by a "transparency overlay process" argument (cf. Meier 2008).

$$s^{(1)} \cup s^{(2)} = s$$
 is union of two RPs $s^{(1)}$ and $s^{(2)}$ of $oldsymbol{x}_
ho \in \mathbb{R}^2$.

Theory of Regular Pavings (RPs)

Algorithm 1: RPUnion($\rho^{(1)}, \rho^{(2)}$)

: Root nodes $\rho^{(1)}$ and $\rho^{(2)}$ of RPs $s^{(1)}$ and $s^{(2)}$, respectively, with root box $\boldsymbol{x}_{o(1)} = \boldsymbol{x}_{o(2)}$ input **output** : Root node ρ of RP $s = s^{(1)} \cup s^{(2)}$ if $IsLeaf(\rho^{(1)})$ & $IsLeaf(\rho^{(2)})$ then $\rho \leftarrow \operatorname{Copy}(\rho^{(1)})$ return o end else if !IsLeaf($\rho^{(1)}$) & IsLeaf($\rho^{(2)}$) then $\rho \leftarrow Copv(\rho^{(1)})$ return ρ end else if $IsLeaf(\rho^{(1)})$ & $!IsLeaf(\rho^{(2)})$ then $\rho \leftarrow Copv(\rho^{(2)})$ return o end else $!IsLeaf(\rho^{(1)}) \& !IsLeaf(\rho^{(2)})$ end Make ρ as a node with $\boldsymbol{x}_{\rho} \leftarrow \boldsymbol{x}_{\rho(1)}$ Graft onto ρ as left child the node RPUnion($\rho^{(1)}L, \rho^{(2)}L$) Graft onto ρ as right child the node RPUnion($\rho^{(1)}R, \rho^{(2)}R$) return o

Note: this is not the minimal union of the (Boolean mapped) RPs of Jaulin et. al. 2001

Dfn: Mapped Regular Paving (MRP)

► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_{\rho} \in \mathbb{IR}^d$

- ► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_{\rho} \in \mathbb{IR}^d$
- and let \mathbb{Y} be a non-empty set.

- ► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_{\rho} \in \mathbb{IR}^d$
- and let \mathbb{Y} be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.

- ► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_{\rho} \in \mathbb{IR}^d$
- and let \mathbb{Y} be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- Let *f* : V(*s*) → Y map each node of *s* to an element in Y as follows:

$$\{\rho \mathsf{v} \mapsto f_{\rho \mathsf{v}} : \rho \mathsf{v} \in \mathbb{V}(s), f_{\rho \mathsf{v}} \in \mathbb{Y}\}$$
.

Dfn: Mapped Regular Paving (MRP)

- ► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $\mathbf{x}_{\rho} \in \mathbb{IR}^{d}$
- and let \mathbb{Y} be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- Let f : V(s) → Y map each node of s to an element in Y as follows:

$$\{\rho \mathsf{v} \mapsto f_{\rho \mathsf{v}} : \rho \mathsf{v} \in \mathbb{V}(\boldsymbol{s}), f_{\rho \mathsf{v}} \in \mathbb{Y}\}$$
.

Such a map f is called a 𝔄-mapped regular paving (𝔄-MRP).

- ► Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $\mathbf{x}_{\rho} \in \mathbb{IR}^{d}$
- and let \mathbb{Y} be a non-empty set.
- Let V(s) and L(s) denote the sets all nodes and leaf nodes of s, respectively.
- Let f : V(s) → Y map each node of s to an element in Y as follows:

$$\{\rho \mathsf{v} \mapsto f_{\rho \mathsf{v}} : \rho \mathsf{v} \in \mathbb{V}(\boldsymbol{s}), f_{\rho \mathsf{v}} \in \mathbb{Y}\}$$
.

- Such a map f is called a 𝔄-mapped regular paving (𝔄-MRP).
- ► Thus, a \mathbb{Y} -MRP *f* is obtained by augmenting each node ρv of the RP tree *s* with an additional data member $f_{\rho v}$.

L Theory of Mapped Regular Pavings (MRPs)

Examples of **Y-MRPs**

If $\mathbb{Y} = \mathbb{R}$

L Theory of Mapped Regular Pavings (MRPs)

Examples of **Y**-MRPs

If $\mathbb{Y}=\mathbb{B}$

B-MRP over s_{122} with $x_{\rho} = [0, 1]^2$ (e.g. Jaulin et. al. 2001)

Theory of Mapped Regular Pavings (MRPs)

Examples of **Y**-MRPs

- $\mathsf{If}\,\mathbb{Y}=\mathbb{IR}$
- frb tree representation for interval inclusion algebra

IR-MRP enclosure of the Rosenbrock function with $x_
ho = [-1,1]^2$

L Theory of Mapped Regular Pavings (MRPs)

```
Examples of Y-MRPs
```

If $\mathbb{Y} = [0, 1]^3$ - R G B colour maps

 $[0,1]^3$ -MRP over s_{3321} with $x_{
ho} = [0,1]^3$

L Theory of Mapped Regular Pavings (MRPs)

Examples of \mathbb{Y} -MRPs If $\mathbb{Y} = \mathbb{Z}_+ := \{0, 1, 2, ...\}$ – radar-measured aircraft trajectory data

 \mathbb{Z}_+ -MRP trajectory of an aircraft and its tree

Y-MRP Arithmetic

If $\star : \mathbb{Y} \times \mathbb{Y} \to \mathbb{Y}$ then we can extend \star point-wise to two \mathbb{Y} -MRPs f and g with root nodes $\rho^{(1)}$ and $\rho^{(2)}$ via $MRPOperate(\rho^{(1)}, \rho^{(2)}, \star)$. This is done using $MRPOperate(\rho^{(1)}, \rho^{(2)}, +)$

\mathbb{R} -MRP Addition by MRPOperate $(ho^{(1)}, ho^{(2)},+)$

adding two piece-wise constant functions or $\mathbb{R}\text{-}\mathsf{MRPs}$

Algorithm 2: MRPOperate $(\rho^{(1)}, \rho^{(2)}, \star)$

 $\begin{array}{c|c} \text{input} & : \text{two root nodes } \rho^{(1)} \text{ and } \rho^{(2)} \text{ with same root box } \textbf{x}_{\rho^{(1)}} = \textbf{x}_{\rho^{(2)}} \text{ and binary operation } \star. \\ \text{output} & : \text{the root node } \rho \text{ of } \mathbb{Y}\text{-}\mathsf{MRP} \ h = f \star g. \\ \\ \text{Make a new node } \rho \text{ with box and image} \\ \textbf{x}_{\rho} \leftarrow \textbf{x}_{\rho^{(1)}}; \ h_{\rho} \leftarrow f_{\rho^{(1)}} \star g_{\rho^{(2)}} \\ \text{if } \text{IsLeaf}(\rho^{(1)}) & \& \text{IsLeaf}(\rho^{(2)}) \text{ then} \\ \\ \text{Make temporary nodes } L', \ R' \\ \textbf{x}_{L'} \leftarrow \textbf{x}_{\rho^{(1)}}; \ \textbf{x}_{R'} \leftarrow \textbf{x}_{\rho^{(1)}R} \\ f_{L'} \leftarrow f_{\rho^{(1)}}, \ f_{R'} \leftarrow f_{\rho^{(1)}} \\ \\ \text{Graft onto } \rho \text{ as left child the node } \text{MRPOperate}(L', \rho^{(2)}L, \star) \\ \text{Graft onto } \rho \text{ as right child the node } \text{MRPOperate}(R', \rho^{(2)}R, \star) \\ \\ \text{end} \\ \\ \end{array} \\ \begin{array}{c} \text{else if } \text{IsLeaf}(\rho^{(1)}) & \& \ \text{IsLeaf}(\rho^{(2)}) \text{ then} \\ \\ \text{Make temporary nodes } L', \ R' \\ \textbf{x}_{L'} \leftarrow \textbf{x}_{\rho^{(2)}}; \ \textbf{x}_{D'} \leftarrow \textbf{x}_{\rho^{(2)}} \\ \end{array} \end{array}$

$$g_{\mathsf{L}'} \leftarrow g_{\rho(2)}^{\rho(2)}, g_{\mathsf{R}'} \leftarrow g_{\rho(2)}^{\rho(2)\mathsf{R}}$$

Graft onto ρ as left child the node MRPOperate($\rho^{(1)}L, L', \star$)

Graft onto ho as right child the node $MRPOperate(
ho^{(1)}R,R',\star)$

end

else if <code>!IsLeaf($\rho^{(1)}$) & <code>!IsLeaf($\rho^{(2)}$)</code> then</code>

Graft onto ρ as left child the node $\text{MRPOperate}(\rho^{(1)}L, \rho^{(2)}L, \star)$ Graft onto ρ as right child the node $\text{MRPOperate}(\rho^{(1)}R, \rho^{(2)}R, \star)$

end

return ρ

B-MRP arithmetic

Two Boolean-mapped regular pavings A_1 and A_2 and Boolean arithmetic operations with + for set union, - for symmetric set difference, \times for set intersection, and \div for set difference.

B-MRP arithmetic

Two Boolean-mapped regular pavings A_1 and A_2 and Boolean arithmetic operations with + for set union, - for symmetric set difference, \times for set intersection, and \div for set difference.

Example – Prioritised Splitting

inclusion function: $\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{x}^2 + (\boldsymbol{x} + 1)\sin(10\pi\boldsymbol{x})^2\cos(3\pi\boldsymbol{x})^2$ priority function: $\psi(\rho \mathbf{v}) = \operatorname{vol}(\rho \mathbf{v})\operatorname{wid}(\boldsymbol{g}(\boldsymbol{x}_{\rho \mathbf{v}}))$

Algorithm 3: RPQEnclose $\nabla(\rho, \boldsymbol{g}, \psi, \ell)$ **input** : ρ , the root node of IR-MRP **f** with RP s, root box \mathbf{x}_{ρ} and $\boldsymbol{f}_{a} = \boldsymbol{q}(\boldsymbol{x}_{a}),$ $\psi : \mathbb{L}(s) \to \mathbb{R}$ such that $\psi(\rho \mathbf{v}) = \operatorname{vol}(\mathbf{x}_{\rho \mathbf{v}}) (\mathbf{g}(\mathbf{x}_{\rho \mathbf{v}}) - 0.5 (\mathbf{g}(\mathbf{x}_{\rho \mathbf{v} \mathbf{L}}) + \mathbf{g}(\mathbf{x}_{\rho \mathbf{v} \mathbf{R}}))),$ $\overline{\ell}$ the maximum number of leaves. **output** : **f** with modified RP s such that $|\mathbb{L}(s)| = \overline{\ell}$ if $|\mathbb{L}(s)| < \overline{\ell}$ then $\rho \mathbf{v} \leftarrow \texttt{random_sample} \left(\operatorname*{argmax}_{\rho \mathbf{v} \in \mathbb{L}(s)} \psi(\rho \mathbf{v}) \right)$ **Split** $\rho v: \nabla(\rho v) = \{\rho v L, \rho v R\}$ // split the sampled node $\boldsymbol{f}_{\rho\mathsf{VL}} \leftarrow \boldsymbol{g}(\Box(\boldsymbol{x}_{\rho\mathsf{VL}}))$ $\boldsymbol{f}_{o\mathsf{V}\mathsf{R}} \leftarrow \boldsymbol{g}(\Box(\boldsymbol{x}_{o\mathsf{V}\mathsf{L}}))$ RPOEnclose $\nabla(\rho, \psi, \bar{\ell})$ end

Example - Prioritised Splitting Continued inclusion function: $g(\mathbf{x}) = \mathbf{x}^2 + (\mathbf{x} + 1) \sin(10\pi \mathbf{x})^2 \cos(3\pi \mathbf{x})^2$ priority function: $\psi(\rho \mathbf{v}) = \operatorname{vol}(\rho \mathbf{v}) \operatorname{wid}(\mathbf{g}(\mathbf{x}_{\rho \mathbf{v}}))$

Can we get tighter enclosures using only 50 leaves by propagating the interval hull of 100-leaved IR-MRP up the tree and then doing a prioritised merging of the cherries?

Hull Propagate up the tree via HullPropagate(ρ)

Algorithm 4: HullPropagate(ρ)

input : ρ , the root node of IR-MRP *f* with RP *s*. output : Modify input MRP *f*.

```
\begin{array}{c|c} \text{if} ! \texttt{IsLeaf}(\rho) \text{ then} \\ & \texttt{HullPropagate}(\rho \texttt{L}) \\ & \texttt{HullPropagate}(\rho \texttt{R}) \\ & \textbf{f}_{\rho} \leftarrow \textbf{f}_{\rho \texttt{L}} \sqcup \textbf{f}_{\rho \texttt{R}} \\ \text{end} \end{array}
```

By calling HullPropagate(ρ) on our IR-MRP of Example constructed by RPQEnclose $\nabla(\rho, \boldsymbol{g}, \psi, \bar{\ell} = 100)$ we would have tightened the range enclosures of \boldsymbol{g} in the internal nodes.

Prioritised Merging via RPQEnclose $^{\triangle}(ho,\psi,ar{\ell}')$

Algorithm 5: RPQEnclose $^{\triangle}(\rho,\psi,\bar{\ell}')$

input : ρ , the root node of IR-MRP *f* with RP *s*, box \boldsymbol{x}_{ρ} , ψ : $\mathbb{C}(\boldsymbol{s}) \to \mathbb{R}$ as $\psi(\rho \mathbf{v}) = \operatorname{vol}(\boldsymbol{x}_{\rho \mathbf{v}}) (\boldsymbol{f}_{\rho \mathbf{v}} - 0.5 (\boldsymbol{f}_{\rho \mathbf{v} \mathbf{L}} + \boldsymbol{f}_{\rho \mathbf{v} \mathbf{R}}))$, $\bar{\ell}'$ the maximum number of leaves. output : modified *f* with RP *s* such that $|\mathbb{L}(\boldsymbol{s})| = \bar{\ell}'$ or $\mathbb{C}(\boldsymbol{s}) = \emptyset$. if $|\mathbb{L}(\boldsymbol{s})| \geq \bar{\ell}' \in \mathbb{C}(\boldsymbol{s}) \subset \emptyset$.

$$\begin{array}{l} \mbox{if } |\mathbb{L}(s)| \geq \bar{\ell}' \& \mathbb{C}(s) \neq \emptyset \mbox{ then } \\ \rho \mathsf{V} \leftarrow \mbox{random_sample} \left(argmin_{\rho \mathsf{V} \in \mathbb{C}(s)} \psi(\rho \mathsf{V}) \right) & // \mbox{ choose a } \\ \mbox{random node with smallest } \psi \\ \mbox{Prune}(\rho \mathsf{L}) \\ \mbox{Prune}(\rho \mathsf{R}) \\ \mbox{RPQEnclose}^{\Delta}(\rho, \psi, \bar{\ell}') \\ \mbox{end} \end{array}$$

Example – Split, Propogating & Prune

 $\begin{array}{l} \label{eq:product} \mbox{Yes we can!} \\ \mbox{RFQEnclose}^{\bigtriangledown}(\rho, \textbf{\textit{g}}, \psi, \bar{\ell} = 100); \mbox{HullPropagate}(\rho); \mbox{RFQEnclose}^{\bigtriangleup}(\rho, \psi, \bar{\ell}' = 50) \end{array}$

Statistical Applications

- "Nonparametric Density Estimation" with massive metric data streams
- Stat. Operations: Coverage, Marginal integral and Slice
- Memory-efficient Arithmetic for Air Traffic Co-trajectories
- Life Science Appl.: Animal Migration Track
- Bold untried Idea: Set-valued Arithmetic for Geospatial Data (Global EQ data)

Nonparametric Density Estimation

Problem: Take samples from an unknown density *f* and consistently reconstruct *f*

Nonparametric Density Estimation

Approach: Use statistical regular paving to get \mathbb{R} -MRP data-adaptive histogram

Nonparametric Density Estimation

Solution: \mathbb{R} -MRP histogram averaging allows us to produce a consistent Bayesian estimate of the density (up to 10 dimensions)

(Teng, Harlow, Lee and S., ACM Trans. Mod. & Comp. Sim., [r. 2] 2012)

Coverage, Marginal & Slice Operators of \mathbb{R} -MRP

 \mathbb{R} -MRP approximation to Levy density and its coverage regions with $\alpha = 0.9$ (light gray), $\alpha = 0.5$ (dark gray) and $\alpha = 0.1$ (black)

Coverage, Marginal & Slice Operators of ℝ-MRP

Coverage, Marginal & Slice Operators of \mathbb{R} -MRP

The slices of a simple \mathbb{R} -MRP in 2D

Air Traffic "Arithmetic" \rightarrow dynamic air-space configuration

(G. Teng, K. Kuhn and RS, *J. Aerospace Comput., Inf. & Com.*, 9:1, 14–25, 2012.) On a Good Day

Air Traffic "Arithmetic" \rightarrow dynamic air-space configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.) \mathbb{Z}_+ -MRP On a Good Day

Air Traffic "Arithmetic" \rightarrow dynamic air-space configuration

(G. Teng, K. Kuhn and RS, *J. Aerospace Comput., Inf. & Com.*, 9:1, 14–25, 2012.) On a Bad Day

Air Traffic "Arithmetic" \rightarrow dynamic air-space configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14-25, 2012.)

 \mathbb{Z}_+ -MRP On a Bad Day

Air Traffic "Arithmetic" \rightarrow dynamic air-space configuration

(G. Teng, K. Kuhn and RS, J. Aerospace Comput., Inf. & Com., 9:1, 14–25, 2012.) \mathbb{Z}_+ -MRP pattern for Good Day – Bad Day

- Conclusions and References

Conclusions

- ► Y-MRPs provide frb-tree partition arithmetic
- IN-MRPs allow efficient arithmetic for Neumaier's inclusion algebras
- IY can be IR for $f : \mathbb{IR}^d \to \mathbb{IR}$
- IY can be \mathbb{IR}^m for $f: \mathbb{IR}^d \to \mathbb{IR}^m$
- IY can be (Iℝ, Iℝ^m, Iℝ^{m²}) for range, gradient & Hessian of
 f : Iℝ^d → Iℝ
- Other obvious extensions include arithmetic over Taylor polynomial inclusion algebras
- In general the domain and range of *f* can be complete lattices with intervals and bisection operations
- We have seen several statistical applications of Y-MRPs
- CODE: mrs: a C++ class library for statistical set processing by Bycroft, Harlow, Sainudiin, Teng and York.

- Conclusions and References

References

Jaulin, L., Kieffer, M., Didrit, O. & Walter, E. (2001). *Applied interval analysis*. London: Springer-Verlag.

Meier, J., *Groups, graphs and trees: an introduction to the geometry of infinite groups*, CUP, Cambridge, 2008.

Neumaier, A., *Interval methods for systems of equations*, CUP, Cambridge, 1990.

Lugosi, G. and Nobel, A. (1996). Consistency of data-driven histogram methods for density estimation and classification. *The Annals of Statistics* **24** 687–706.

Sainudiin, R. and York, T. L. (2005). *An Auto-validating Rejection Sampler*. BSCB Dept. Technical Report BU-1661-M, Cornell University, Ithaca, New York. - Conclusions and References

Acknowledgements

- RS's external consulting revenues from the New Zealand Ministry of Tourism
- WT's Swedish Research Council Grant 2008-7510 that enabled RS's visits to Uppsala in 2006 and 2009
- Erskine grant from University of Canterbury that enabled WT's visit to Christchurch in 2011
- University of Canterbury MSc Scholarship to JH.

Conclusions and References

Thank you!