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Definition of parallelepiped

Parallelepiped in R
n:

P = P(p ,P , π) = {x | x = p +

n
∑

i=1

piπiξi , |ξi |≤1}.

p ∈ R
n — center of parallelepiped;

P = {pi} ∈ Mn×n
∗ — orientation matrix;

Mn×n
∗ = {P ∈ IRn×n | det P 6=0, ‖pi‖ = 1};

pi — directions of ”semi-axes”;

π ∈ R
n, πi ≥ 0 — values of ”semi-axes”.

(‖pi‖ = 1 — is not important).

p 
π

i

pi 

Parallelepiped P with P = I is known as a box or an interval vector.
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External polyhedral estimates for sets in R
n

External polyhedral estimate P for Q ⊂ R
n:

Q ⊆ P = P(p ,P , π).

Tight [2] (in direction l) external estimate P for Q:

Q ⊆ P and ∃ l ∈ R
n : ρ(±l |P ) = ρ(±l |Q).

Touching external estimate P (p,P , π) for Q:

it is tight estimate in directions l i = P−1⊤ei , i = 1, . . . , n.

(ρ(l |Q)= sup{l⊤x |x∈Q} — support function, ei — unit vector
oriented along the axis 0xi ).
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Reachable sets

Consider a linear system:

ẋ = A(t) x + w(t), t ∈ T = [0, θ]. (1)

x(0) ∈ X0; w(t) ∈ R(t). (2)

Reachable set for system (1) – (2):

X (t) = X (t, 0,X0) = { x ∈ R
n : ∃ {x(0),w(·)}, that satisfies (2)

and generates a solution x(·) of (1) satisfying x(t) = x }.

It is known that reachable sets satisfy the semigroup property.

We suppose the sets X0, R(t) to be parallelepipeds:

X0 = P(p0,P0, π0), R(t) = P(r(t),R(t), ρ(t)). (3)
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Problems

Problems considered earlier:

Find some external estimates P (t)=P(p(t),P (t), π(t)) for
X (t): X (t) ⊆ P (t), satisfying evolutionary properties (the
"upper" semigroup property and the superreachability
property) for P (t)
which are analogues to the semigroup property for X (t).
Moreover, describe a parametrized family P of such estimates.

Introduce some families of tight/touching estimates P (·) such
that

X (t) =
⋂

P (t).
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Family P of external estimates P (·)
Fix P(·) ∈ C 1: det P(t) 6= 0, t ∈ T (dynamics of orientation
matrices). Let p(·) and π(·) satisfy

ṗ = A p + r , p(0) = p0;

π̇ = Ab (P−1(AP−Ṗ))π + Abs (P−1R)ρ, π(0) = Abs (P(0)−1P0)π0,

where (Abs A)ji=|aj
i | for A={aj

i} and (Ab A)ii=ai
i , (Ab A)ji=|aj

i |, i 6=j .

Theorem 1

Parallelepipeds P (t) = P(p(t),P (t), π(t)) satisfy the generalized
upper semigroup property and the superreachability property and
X (t) ⊆ P (t).

Here the entire family P of estimates is described (P(·) serves as a
parameter).
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Subfamilies of estimates with different dynamics P(·)
Subfamily P1 ⊂ P (of touching estimates P (·)):

P(·) satisfies Ṗ = AP , P(0) = V .

Proposition 1 (about estimates P (·) ∈ P1):

P (t) are touching for X (t) and X (t) =
⋂

{P (t) | V ∈ V0}, t ∈ T .

Subfamily P2 ⊂ P of estimates with constant orientation matrices
(includes box-valued or coordinate-wise estimates):

P(t) ≡ P = V .

Subfamily P3 ⊂ P (of tight estimates P (·)):
ṗi = A(t)pi , i=1, . . . , n−1; ṗn = −A(t)⊤pn;

P(0) = V = {v i}, det V 6= 0, vn⊤v i = 0, i=1, . . . , n−1.

Proposition 2 (about estimates P (·) ∈ P3):

P (t) are tight (in directions pn(t)) estimates for X (t) and
X (t) =

⋂ {P (t) | vn ∈ R
n, ‖vn‖ = 1}, t ∈ T .
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Example of external and internal estimates
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Problems

Assumption 1

In system (1) matrix A(t) ≡ A is stable (i.e. all Re λk < 0) and
set-valued map R(t) (t ∈ [0,∞)) is bounded.

Investigate boundedness and unboundedness of external estimates
from Pi , i = 1, 2, 3:

For which P(0) = V estimates P (t), t ∈ [0,∞), are either
bounded or unbounded?

Find conditions on A, P0, R(·) which ensure that

there exist bounded or unbounded estimates in Pi ;
all the estimates from Pi are bounded or unbounded.

What is possible degree of increasing the estimates from Pi?
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Comparison of estimates using a functional

Requirements on criterion µ(P ) = µ(P(p ,P , π)):

it is defined ∀P ; non-negativity: µ(P ) ≥ 0.

monotonicity under inclusion: P(1)⊆P(2)⇒µ(P(1))≤µ(P(2)).

Volume functional: µvol (P )
△
= 2−nvolP = | det P |∏n

i=1 πi .

Other possible criteria:

µ(P ) = ‖q‖, where q = (Abs P)π (we have qi = ρ(±ei |P − p)),
‖q‖ is arbitrary of usual norms ‖q‖1, ‖q‖2 or ‖q‖∞.

Proposition 3

Boundedness (unboundedness) of P (·) is equivalent to
boundedness (unboundedness) of µ(P (·)), where µ(P ) = ‖q‖.

Exponent χ = χ(P) of the tube (estimate) P (t), t ∈ [0,∞):

χ = χ(P) = limt→∞t−1 lnµ(P (t))
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Boundedness (unboundedness) of external estimates

Sufficient conditions for P (·) ∈ Pi , i = 1, 2, 3, to be bounded /
unbounded (particularly depending on V , A, P0, R(·)) are obtained.

Ṗ = AP P(t) ≡ P P3

We will see that the estimates can be unbounded not only if
P (·) ∈ P2 (for V = I this is "wrapping effect" known from interval
analysis) but also if P (·) ∈ P1 or P (·) ∈ P3 under the following

Condition of nondegeneracy of R(·):

R(t) ⊇ P(r(t), I , ε0 e), t ∈ [0,∞), where ε0 > 0, e=(1, . . . , 1)⊤.

Estimates from P2 can be unbounded also under the following

Condition of nondegeneracy of P0:

P0 ⊇ P(p0, I , ε0 e), t ∈ [0,∞), where ε0 > 0.

Ṗ = AP P(t) ≡ P
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Auxiliary material: real Jordan form of matrix

If A ∈ IRn×n and λk = αk + βk

√
−1, k = 1, . . . ,m, are all its

eigenvalues (here βk ≥ 0), then A is similar to

Matrix in the real Jordan form

J = TAT−1, where J = diag {J1, . . . , Jm};

Jk =













Sk I . . . 0 0
0 Sk . . . 0 0

. . .

0 0 . . . Sk I

0 0 . . . 0 Sk













∈ IR(νkγk)×(νkγk), k = 1, . . . ,m;

Sk , I , 0 ∈ IRνk×νk , νk = 1 or 2;

νk = 1, Sk = αk if βk = 0; νk = 2, Sk =

[

αk −βk

βk αk

]

if βk 6= 0.

Matrix A is called diagonalizable if all γk = 1 and defective
otherwise. Theorem for P1
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Boundedness (unboundedness) of P (·) ∈ P2

(when P(t) ≡ P)

Let λk and ωk be eigenvalues of matrices A and AP=Ab (P−1AP)
respectively (recall that (Ab B)ii=bi

i , (Ab B)ji=|bj
i |, i 6=j).

Proposition 4

1 P (·) ∈ P2 is bounded if AP = Ab (P−1AP) is stable.

2 P (·) is unbounded if ∃ωk with Re ωk > 0 and either P0 or
R(·) satisfy Condition of nondegeneracy .

Theorem 2

1 If A = αI , then P (·) are bounded ∀P .

2 If A 6= αI and either P0 or R(·) satisfy Condition of
nondegeneracy, then ∃P (·) ∈ P2 with arbitrary large χ(P ).

3 If all |Im λk | < |Re λk |, then ∃P (in particular, P=T−1,
where A=T−1JT ) which generate bounded P (·).
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Boundedness (unboundedness) of P (·) ∈ P1

(touching estimates) when Ṗ = AP

Proposition 5

If R(t) (which bound the controls) are singletons, then estimates

P (t) = P(p(t),P (t), π(t)) → p(t) as t → ∞, ∀P(0).

Let m = min |Re λk |, M = max |Re λk |.
Theorem 3

1 χ(P ) ≤ M − m.

2 If A is diagonalizable, then there are following possibilities.

1 If M = m, then P (·) are bounded ∀P(0).
2 If M 6= m, then ∃P(0) (in particular, P(0) = T−1 )

which generate bounded estimates P (·).
But if R(·) satisfies Condition of nondegeneracy , then
∃P(0) which generate unbounded estimates P (·).

3 If A is defective and R(·) satisfies Condition of nondegeneracy,
then P (·) are unbounded ∀P(0).
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Boundedness (unboundedness) of P (·) ∈ P3
(tight estimates)

Recall that P(0) = V = {v i} satisfies vn⊤v i = 0, i = 1, . . . , n−1.
Let V̄ = {v̄ i} be such that v̄ i = v i , i = 1, . . . , n−1, det V̄ 6= 0.

Theorem 4

1 χ(P ) ≤ M − m, where m = min |Re λk |, M = max |Re λk |.
2 If A is diagonalizable, then there are following possibilities.

1 If M = m, then P (·) are bounded ∀P(0).
2 If M 6= m, then ∃P(0) which generate bounded estimates

P (·) (in particular, P(0) = V for which the corresponding
matrix V̄ = T−1, where T is such that J = TAT−1).
But if n ≥ 3 and R(·) satisfies Condition of
nondegeneracy, then ∃P(0) which generate unbounded
estimates P (·).

The fact which is unlike to the situation for P1 and P2:

Theorem 5

If n = 2, then P (·) are bounded ∀P(0).
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Boundedness (unboundedness) of P (·) ∈ Pi , i = 1, 2, 3
(case n = 2)

Additional
conditions
on
P0,R(·)

Imλ1 = Im λ2 = 0 λ1,2 = α ± β
√
−1, β 6= 0

A—diagonalizable: A—defective: A — diagonalizable:

J =

[

λ1 0
0 λ2

]

J=

[

α 1
0 α

]

J=TAT
−1=

[

α −β

β α

]

λ1=λ2 |λ1|<|λ2| λ1=λ2=α |α|>|β| |α|=|β| |α|<|β|
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

– � � � � � � � � �

R(t)≡r(t),
intP0 6=∅ � � � �� � �� � �� � �� � �

intR(t) 6=∅ � � �� �� � �� � �� � � � �

� — all tubes are bounded;
� — ∃ bounded tubes;
� — ∃ unbounded tubes;
� — all tubes are unbounded.

If n = 2, then all P (·) ∈ P3 are bounded. ⇒ � should be
everywhere for P3.
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Family P0 6⊆ P+ of estimates for time-invariant systems
(P(t) ≡ P)

Assumption 2

A(t) ≡ A and R(t) ≡ R, ρ(t) ≡ ρ.

Family P0 6⊆ P+ of P(p(·),P , π(·)) with P(t) ≡ P :

π(t) = π1(t) + π2(t);

π1(t) = (Abs P1(t))π0; Ṗ1 = Ã P1, P1(0) = P−1P0;

π̇2 = (Abs P2(t)) ρ, π2(0) = 0; Ṗ2 = Ã P2, P2(0) = P−1R ;

Ã = P−1AP .

Proposition 6

Under Assumption 2, if P (·) ∈ P0, then P (t) are touching

estimates for X (t) and X (t)=
⋂

{P (t) |P∈V0}.
Under additional Assumption 1 P (·) is bounded ∀P∈Mn×n

∗ .

Such estimates P (t) do not satisfy the evolutionary properties.
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Example 1: Imλk = 0, λ1 = λ2, A — diagonalizable

A ≡
[

−1 0
0 −1

]

,
X0 = P((0,−1.5)⊤, I , (1, 0.5)⊤),
R = P(0, I , (0.5, 1)⊤), θ = 6.

(λ1 = λ2 = −1)

Obtained estimates from P1, P2, P3 and P0 coincide:
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Example 2: Imλk = 0, λ1 6= λ2, A — diagonalizable

A ≡
[

−1.2 −0.2
−0.3 −1.3

]

,
X0 = P((0,−1.5)⊤ , I , (1, 0.5)⊤),
R = P(0, I , (0.5, 1)⊤), θ = 6.

(λ1= − 1, λ2= − 1.5)

Estimates from P0 (at the left) and from P3 (at the right):
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Example 2: Imλk = 0, λ1 6= λ2, A — diagonalizable

Estimates from P1 (at the top): (∃ bounded, ∃ unbounded)
and from P2 (at the bottom): (∃ bounded, ∃ unbounded)
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Example 3: Im λk = 0, λ1 = λ2, A — defective

A ≡
[

−0.8 0.2
−0.2 −1.2

]

,
X0 = P((0,−1.5)⊤ , I , (1, 0.5)⊤),
R = P(0, I , (0.5, 1)⊤), θ = 6.

(λ1 = λ2 = −1)

Estimates from P0 (at the left) and from P3 (at the right):
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Example 3: Im λk = 0, λ1 = λ2, A — defective
Estimates from P1 (at the top): (all unbounded)
and from P2 (at the bottom): (∃ bounded, ∃ unbounded)

−3

0

3

0

6

−3

0

3

t

x
1

x 2

−3 0 3
−3

0

3

 

 

x
1

x
2

−3

0

3

0

6

−3

0

3

t

x
1

x 2

−3 0 3
−3

0

3

 

 

x
1

x
2

Elena K. Kostousova On boundedness and unboundedness of polyhedral estimates



Example 4: λ1,2 = α ± β
√
−1, |β| < |α|

A ≡
[

−0.5 −0.5
1 −1.5

]

,
X0 = P((0,−1.5)⊤, I , (1, 0.5)⊤),
R = P(0, I , (0, 1)⊤), θ = 6.

(α = −1, β = 0.5)

Estimates from P0 (at the left) and from P3 (at the right):
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Example 4: λ1,2 = α ± β
√
−1, |β| < |α|

Estimates from P1 (at the top): (all bounded)
and from P2 (at the bottom): (∃ bounded, ∃ unbounded)
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Example 5: λ1,2 = α ± β
√
−1, |β| > |α|

A ≡
[

2.5 −3.5
7 −4.5

]

,
X0 = P((0,−1.5)⊤ , I , 0),
R = P(0, I , (0, 1)⊤), θ = 6.

(α = −1, β = 3.5)

Estimates from P0 (at the left) and from P3 (at the right):
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Example 5: λ1,2 = α ± β
√
−1, |β| > |α|

θ = 1. Estimates from P1 (at the top): (all bounded)
and from P2 (at the bottom): (all unbounded).
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Conclusion

Boundedness and unboundedness of estimates from Pi ∈ P,
i = 1, 2, 3, is investigated for systems with stable constant
matrices:

Sufficient conditions for P (t), t ∈ [0,∞), to be bounded
(unbounded), depending on V , A, P0, R(·), are obtained.

The conditions on A, P0, R(·) are presented which ensure that
either there exist bounded or unbounded estimates in Pi or all
the estimates from Pi are bounded or unbounded.

The possible degree of increasing the estimates from Pi is
described in terms of tube exponents.

The full description, classification and comparison of possible
situations of boundedness and unboundedness of estimates are
given for two-dimensional systems.

The results of numerical simulations are presented.
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Semigroup property

Semigroup property for reachable sets: Return 1

X (t, 0,X0) = X (t, τ,X (τ, 0,X0)), 0 ≤ τ ≤ t ≤ θ.

"Upper" semigroup property for P (t) = P(t, 0,P (0)):

P(t, 0,P (0)) = P(t, τ,P(τ, 0,P (0))), ∀τ, t : 0 ≤ τ≤t ≤ θ;

X0 ⊆ P (0).

Superreachability property for P (t): Return 2

X (t, τ,P (τ)) ⊆ P (t), ∀τ, t : 0 ≤ τ ≤ t ≤ θ;

X0 ⊆ P (0).
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Boundedness (unboundedness) of P (·) ∈ P1 (Ṗ = AP)

Proposition

If R(t) are singletons, then P (t) → p(t) as t → ∞, ∀P(0).

Theorem Nondeg. cond.

1 If A is diagonalizable, M = m, then P (·) are bounded ∀P(0).

2 Let A be diagonalizable, M 6= m, T be a matrix which reduces
A to real Jordan form and Ṽ = TV , W̃ = V−1T−1 be divided
into blocks Ṽ

j
i ∈ IRνi×νj , W̃ i

j ∈ IRνj×νi (i , j = 1, . . . ,m).
If V is such that for each pair λi , λj with |Reλi | < |Reλj | we

have Z
j
i = 0 ∈ IRνi×νj , where Z

j
i =

∑m
k=1 Abs Ṽ k

i Abs W̃
j
k ,

then P (·) is bounded.
If V is such that Z

j
i 6= 0 ∈ IRνi×νj for some pair λi , λj with

|Reλi | < |Reλj | and R(·) satisfies Condition of nondegeneracy,
then P (·) is unbounded and χ(P ) ≥ |Reλj | − |Reλi |.

3 If A is defective and R(·) satisfies Condition of nondegeneracy,
then P (·) are unbounded ∀P(0).

Elena K. Kostousova On boundedness and unboundedness of polyhedral estimates



Boundedness of P (·) ∈ P3 (tight estimates)

Recall that P(0) = V = {v i} satisfies vn⊤v i = 0, i = 1, . . . , n−1.
Let V̄ = {v̄ i} be such that v̄ i = v i , i = 1, . . . , n−1, det V̄ 6= 0.

Theorem Nondeg. cond.

1 If A is diagonalizable, M = m, then P (·) are bounded ∀P(0).

2 Let A be diagonalizable, M 6= m, T be a matrix which reduces
A to real Jordan form and Ṽ = TV̄ , W̃ = V̄−1T−1 be divided
into blocks Ṽ

j
i ∈ IRνi×νj , W̃ i

j ∈ IRνj×νi (i , j = 1, . . . ,m).
If V is such that for each pair λi , λj with |Reλi | < |Reλj | we

have Z
j
i = 0 ∈ IRνi×νj , where Z

j
i =

∑m
k=1 Abs Ṽ k

i Abs W̃
j
k ,

then P (·) is bounded.
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