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R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations
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R ——
Motivation

m In this talk, we will focus on polynomial evaluation

> it frequently appears as a building block of some mathematical operator
implementation ~~ floating-point support emulation

> it can be used to convert calls to floating-point operators into fixed-point code
~ fixed-point conversion

m Remark: There is a huge number of schemes to evaluate a given polynomial,
even for small degree

» degree-5 univariate polynomial ~~ 2334244 different schemes

There is a need for the automation of the design
of polynomial evaluation codes ~~ CGPE.
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1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives
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Outline of the talk

1. The CGPE tool
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Overview of CGPE

m Goal of CGPE: automate the design of fast and certified C codes for evaluating
univariate or bivariate polynomials in fixed-point arithmetic

> by using unsigned fixed-point arithmetic only
> by using the target architecture features (as much as possible)

m Remarks on CGPE

» fast ~~ that reduce the evaluation latency on a given target

» certified ~» for which we can bound the error entailed by the evaluation within the
given target’s arithmetic
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Global architecture of CGPE

m Input of CGPE

cgpe --degree="
--latency=lowest --gappa-certificate --output \
--schedule="[4,2]" --max-kept=5 --operators="[111111111111111111:033333333000333330]"

[8,1]" --xml-input=cgpe-testl.xml --coefs="[100000000111111111]" \

polynomial coefficients and variables: value intervals, fixed-point format, ...
2. set of criteria: maximum error bound and bound on latency (or the lowest)
3. some architectural constraints: operator cost, parallelism level, ..

<polynomial >
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient

0x00000020" sup="0x00000020"
0x80000000" sup="0x80000000"
0x40000000" sup="0x40000000"
0x10000000" sup="0x10000000"
0x07fe93e4d” sup:"0x07fe93e4"
0x04eef694" sup="0x04eef694"
0x032d6643" sup="0x032d6643"
0x01lc6cebd” sup="0x0lc6cebd"
0x00aebe7d" sup="0x00aebe7d" integer_par
0x00200000" sup="0x00200000" integer_par

Svariable xevif inf="0x%00000000" sup="0xfffffe00" sign="0" 1nteqer part= fraction_part="32"/>

<variable x="0" 0x80000000" sup="0xb504£334" sign="0" eger_part= fraction_part="31"/>

<absolute_evalerror value= "2508137348315869301246305352811801038097673319892“3 191" strict="false"/>
</polynomial>

integer_part="2" fraction_part="30"/>
integer_part fraction_part
integer_par fraction_part
integer_par fraction_part
fraction_part="31"/>
fraction_part
1" fraction_part="31"/>
1" fraction_part="31"/>
1" fraction_part="31"/>
1" fraction_part="31"/>

integer_part=
integer_par
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The CGPE tool

Global architecture of CGPE (cont'd)

m Architecture of CGPE = architecture of a compiler

> it proceeds in three main steps

1. Computation step ~~ front-end

» computes schemes reducing the
evaluation latency on unbounded
parallelism ~~ DAG

» considers only the cost of & and ®
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The CGPE tool

Global architecture of CGPE (cont'd)

m Architecture of CGPE = architecture of a compiler

> it proceeds in three main steps

1. Computation step ~~ front-end

» computes schemes reducing the
evaluation latency on unbounded
parallelism ~~ DAG

» considers only the cost of & and ®

2. Filtering step ~~ middle-end

» prunes the DAGs that do not satisfy
different criteria:

® latency ~~ scheduling filter,
® accuracy ~» numerical filter, ...

3. Generation step ~~ back-end

» generates C codes and Gappa
accuracy certificates
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Recent contributions to CGPE

m Features achieved by CGPE

> validated on the ST200 core ~ /X, ¥/x, 1, \i& \%& FIRe

» CGPE produces optimal schemes in terms of latency for some of the above functions

m Features lacking in CGPE, and contributions
> no support for signed fixed-point arithmetic
e handling of variables of constants sign
~~ problem: CGPE fails in evaluating polynomials around one of its roots
> hypotheses are made on the format of the inputs
® no shift operators are allowed during the evaluation
~~ problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
» simple description of the target architecture
® no handling of advanced operators
~~ problem: CGPE fails in making the most out of any advanced instructions
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Recent contributions to CGPE

m Features achieved by CGPE

> validated on the ST200 core ~ /X, ¥/x, 1, \i& \%& FIRe

» CGPE produces optimal schemes in terms of latency for some of the above functions

m Features lacking in CGPE, and contributions
> no support for signed fixed-point arithmetic extension of the arithmetic model
e handling of variables of constants sign
~~ problem: CGPE fails in evaluating polynomials around one of its roots
> hypotheses are made on the format of the inputs shift handling
® no shift operators are allowed during the evaluation
~~ problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
» simple description of the target architecture filter based on instruction selection
® no handling of advanced operators
~~ problem: CGPE fails in making the most out of any advanced instructions
~~ main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path
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Outline of the talk

2. Approach based on instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation



Introduction to instruction selection

m Itis a well known problem in compilation ~~ proven to be NP-complete on DAGs

m Usually solved using a tiling algorithm:
> input:
® a DAG representing an arithmetic expression,
e a set of tiles, with a cost for each,
e afunction that associates a cost to a DAG.

» output: a set of covering tiles that minimize the cost function.

m Examples of advanced instructions
» fma on IEEE processors ~» a * b + c with only one final rounding
» mulacconsome DSP ~»a * b + ¢
> shift-and-add instruction on the ST231 ~» a «b + cin1cycle, withb € {1,---,4}
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Motivation of using instruction selection inside CGPE

m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)
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m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

v/ they provide a short proof of optimality in the case of trees
X their method handles fma in DAGs but is not generic
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Motivation of using instruction selection inside CGPE

m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

v/ they provide a short proof of optimality in the case of trees
X their method handles fma in DAGs but is not generic

m Our goal is twofold:

1. to handle any advanced instruction ~~ described in an external XML file
2. to integrate a numerical verification step in the process of instruction selection
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XML architecture description file

<architecture>

<!-- 32 x 32 -> 32-bit unsigned adder -->
<instruction name="add"

type="unsigned"

latency="1"

nodes="add dag 1 dag 2"

macro="static inline
uint32_t __name__(uint32_t a, uint32_t b)
{
X

return (a + b);

gappa="_r_ fixed<-_Fr_,dn>= _1_ + _2_; _Mr_ = _MI_ + _M2_;"

/>

Q) = ggoq =2
</architecture>

m For each instruction, the XML architecture description file contains:

» the name, the type (signed or unsigned), the latency (# cycles),
> a description of the pattern matched by the instruction,
> a C macro for emulating the instruction in software,

» and a piece of Gappa script for computing the error entailed by the instruction
evaluation in fixed-point arithmetic.
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The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles
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The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

TopDownSelect()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles
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The NOLTIS tiling algorithm

Near-OptimaI Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: impreveGSEDecision{)}
3: BettemUpBP{—+TepBewnSeleet()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

= In our case, only the first step of NOLTIS is valuable.

m NOLTIS algorithm mainly relies on the evaluation of a cost function. We have
implemented three different cost functions:

~ number of operator (regardless commun subexpressions)
~ evaluation latency on unbounded parallelism
~ evaluation accuracy, computed by using the piece of Gappa script for each instruction
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Remarks on instruction selection in CGPE

m A separation is achieved between the computation of the intermediate
representation and the code generation process

> we can generate codes according different criteria
> we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available
|

Set of DAGs

Decorated DAGs

polynomial. xml

<polynomial>
<coefficient ... >

> this general approach allows to tackle other
problems (sum, dot-product, ...)

Svariable .. >

1 <fpolynomial>

front-end

architecture.xml

<architecture>

.

middle-end

Jarchitecture>

Code generator

vy v
[ C files ] [Accuracy certificates
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Remarks on instruction selection in CGPE

m A separation is achieved between the computation of the intermediate
representation and the code generation process

> we can generate codes according different criteria
> we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available

Set of DAGs

Decorated DAGs

polynomial. xml

<polynomial>
<coefficient ... >

> this general approach allows to tackle other
problems (sum, dot-product, ...) g

Svariable .. >

1 <fpolynomial>

architecture.xml

m We are not bounded to basic instructions

<architecture>
- @ ~rf  <instruction name="add"
] ‘type="unsigned”

> we can add many others advanced
instructions or basic blocks

middle-end

Jarchitecture>

» this general approach allows to give some
feedback on the eventual need of some
new instructions

Code generator

back-end
“—>

v v
[ C files ] [Accuracy certificates

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation



Impact on the number of instructions

. no advanced ins‘tructions — .
ol B add]add == | ™ Remark 1: average reduction
_ i e S of 8.7 % up to 13.75 %
o 38 shift-add right 1
é | | m Remark 2: interest of ST231
£ — shift-and-add for sin(x)
g ¥ ] implementation
g Ll | ~- reduction of 8.7 %
= e 1 = Remark 3: interest of
28 |- , shift-and-add with right shift
| for cos(x) and log, (1 + x)
% cos(x) log2(1+4x) implementation
~~ reduction of 12.8 % and
Figure: Average number of instructions in 50 synthesized 13.75 %, respectively

codes, for the evaluation of polynomials of degree 5 up to
12 for various elementary functions.
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Impact on the latency

m Polynomial: degree-7 polynomial approximating the function cos(x) over [0,2]

m Architecture:

> 1 cycle addition/subtraction and shift-and-add
» 3-cycle multiplication and mulacc

Without tiling ~ With tiling | Speed-up

Horner’s rule 41 34 ~17.07 %
Estrin’s rule 16 14 ~12.5%
Best scheme 15 13 ~ 13.33 %

Table: Latency in # cycles on unbounded parallelism, for various schemes, with and without tiling.
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Outline of the talk

3. Conclusion and perspectives
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Conclusion and perspectives

m Target-dependent code generation for fast and certified polynomial evaluation

> in signed and unsigned fixed point arithmetic

» using filter based on instruction selection, so as to make the most out advanced
instructions

> selection according different criteria: operator count, latency on unbounded
parallelism, accuracy

http://cgpe.gforge.inria.fr/

m Further extensions of CGPE

> to tackle other problems, like summation, dot-product, ...

> to handle other arithmetics like floating-point arithmetic, where the fma instruction is
more and more ubiquitous

> to target other architectures (like FPGAS)
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