15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast
and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506
CNRS, LIRMM, UMR 5506

<> UPVD O

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

—

Embedded systems
Software implementing

floating—point arithmetic

N —

m Highly used in audio and video applications
» demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems \ Conversion

N —

m Highly used in audio and video applications
» demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

R ——
Motivation

m In this talk, we will focus on polynomial evaluation

> it frequently appears as a building block of some mathematical operator
implementation ~~ floating-point support emulation

> it can be used to convert calls to floating-point operators into fixed-point code
~ fixed-point conversion

m Remark: There is a huge number of schemes to evaluate a given polynomial,
even for small degree

» degree-5 univariate polynomial ~~ 2334244 different schemes

There is a need for the automation of the design
of polynomial evaluation codes ~~ CGPE.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

.
Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Outline of the talk

1. The CGPE tool

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Overview of CGPE

m Goal of CGPE: automate the design of fast and certified C codes for evaluating
univariate or bivariate polynomials in fixed-point arithmetic

> by using unsigned fixed-point arithmetic only
> by using the target architecture features (as much as possible)

m Remarks on CGPE

» fast ~~ that reduce the evaluation latency on a given target

» certified ~» for which we can bound the error entailed by the evaluation within the
given target’s arithmetic

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Global architecture of CGPE

m Input of CGPE

cgpe --degree="
--latency=lowest --gappa-certificate --output \
--schedule="[4,2]" --max-kept=5 --operators="[111111111111111111:033333333000333330]"

[8,1]" --xml-input=cgpe-testl.xml --coefs="[100000000111111111]" \

polynomial coefficients and variables: value intervals, fixed-point format, ...
2. set of criteria: maximum error bound and bound on latency (or the lowest)
3. some architectural constraints: operator cost, parallelism level, ..

<polynomial >
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient
<coefficient

0x00000020" sup="0x00000020"
0x80000000" sup="0x80000000"
0x40000000" sup="0x40000000"
0x10000000" sup="0x10000000"
0x07fe93e4d” sup:"0x07fe93e4"
0x04eef694" sup="0x04eef694"
0x032d6643" sup="0x032d6643"
0x01lc6cebd” sup="0x0lc6cebd"
0x00aebe7d" sup="0x00aebe7d" integer_par
0x00200000" sup="0x00200000" integer_par

Svariable xevif inf="0x%00000000" sup="0xfffffe00" sign="0" 1nteqer part= fraction_part="32"/>

<variable x="0" 0x80000000" sup="0xb504£334" sign="0" eger_part= fraction_part="31"/>

<absolute_evalerror value= "2508137348315869301246305352811801038097673319892“3 191" strict="false"/>
</polynomial>

integer_part="2" fraction_part="30"/>
integer_part fraction_part
integer_par fraction_part
integer_par fraction_part
fraction_part="31"/>
fraction_part
1" fraction_part="31"/>
1" fraction_part="31"/>
1" fraction_part="31"/>
1" fraction_part="31"/>

integer_part=
integer_par

G. Revy (DALI UPVD/LIRMM Approach based on instruction selection for fast and certified code generation

The CGPE tool

Global architecture of CGPE (cont'd)

m Architecture of CGPE = architecture of a compiler

> it proceeds in three main steps

1. Computation step ~~ front-end

» computes schemes reducing the
evaluation latency on unbounded
parallelism ~~ DAG

» considers only the cost of & and ®

G. Revy (DALI UPVD/LIRMM, UM2, CNRS)

front-end
<+—>

middle-end

DAG computation -

Set of DAGs

| @

Filter n

-1 </polynomial>

polynomial xml

<polynomial>
<coefficient ... >
<variable ..>

architecture.xml

<architecture>

<instructior
typ
later

back-end

v

Decorated DAGs

I Code generator

v

(ciites |

[Accuracy certificates

Approach based on instruction selection for fast and certified code generation

The CGPE tool

Global architecture of CGPE (cont'd)

m Architecture of CGPE = architecture of a compiler

> it proceeds in three main steps

1. Computation step ~~ front-end
» computes schemes reducing the
evaluation latency on unbounded
parallelism ~~ DAG
» considers only the cost of & and ®

2. Filtering step ~~ middle-end

» prunes the DAGs that do not satisfy
different criteria:

® latency ~~ scheduling filter,
® accuracy ~» numerical filter, ...

G. Revy (DALI UPVD/LIRMM, UM2, CNRS)

front-end
<+—>

middle-end

back-end
+“—>

v

DAG computation

Code generator

Set of DAGs

.

Decorated DAGs

v

(ciites |

[Accuracy certificates

Approach based on instruction selection for fast and certified code generation

1 <lpolynomial>

polynomial xml

<polynomial>
<coefficient ... >

Zvariable ...>

architecture.xml

<architecture>

<instruction name="add"
ned"

<Jarchitecture>

The CGPE tool

Global architecture of CGPE (cont'd)

m Architecture of CGPE = architecture of a compiler

> it proceeds in three main steps

1. Computation step ~~ front-end

» computes schemes reducing the
evaluation latency on unbounded
parallelism ~~ DAG

» considers only the cost of & and ®

2. Filtering step ~~ middle-end

» prunes the DAGs that do not satisfy
different criteria:

® latency ~~ scheduling filter,
® accuracy ~» numerical filter, ...

3. Generation step ~~ back-end

» generates C codes and Gappa
accuracy certificates

G. Revy (DALI UPVD/LIRMM, UM2, CNRS)

front-end
<+—>

middle-end

back-end
+“—>

v

DAG computation

Code generator

Set of DAGs

.

Decorated DAGs

v

(ciites |

[Accuracy certificates

Approach based on instruction selection for fast and certified code generation

1 <lpolynomial>

polynomial xml

<polynomial>
<coefficient ... >

Zvariable ...>

architecture.xml

<architecture>

<instruction name="add"
ned"

<Jarchitecture>

8/20

Recent contributions to CGPE

m Features achieved by CGPE

> validated on the ST200 core ~ /X, ¥/x, 1, \i& \%& FIRe

» CGPE produces optimal schemes in terms of latency for some of the above functions

m Features lacking in CGPE, and contributions
> no support for signed fixed-point arithmetic
e handling of variables of constants sign
~~ problem: CGPE fails in evaluating polynomials around one of its roots
> hypotheses are made on the format of the inputs
® no shift operators are allowed during the evaluation
~~ problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
» simple description of the target architecture
® no handling of advanced operators
~~ problem: CGPE fails in making the most out of any advanced instructions

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Recent contributions to CGPE

m Features achieved by CGPE

> validated on the ST200 core ~ /X, ¥/x, 1, \i& \%& FIRe

» CGPE produces optimal schemes in terms of latency for some of the above functions

m Features lacking in CGPE, and contributions
> no support for signed fixed-point arithmetic extension of the arithmetic model
e handling of variables of constants sign
~~ problem: CGPE fails in evaluating polynomials around one of its roots
> hypotheses are made on the format of the inputs shift handling
® no shift operators are allowed during the evaluation
~~ problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
» simple description of the target architecture filter based on instruction selection
® no handling of advanced operators
~~ problem: CGPE fails in making the most out of any advanced instructions

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Recent contributions to CGPE

m Features achieved by CGPE

> validated on the ST200 core ~ /X, ¥/x, 1, \i& \%& FIRe

» CGPE produces optimal schemes in terms of latency for some of the above functions

m Features lacking in CGPE, and contributions
> no support for signed fixed-point arithmetic extension of the arithmetic model
e handling of variables of constants sign
~~ problem: CGPE fails in evaluating polynomials around one of its roots
> hypotheses are made on the format of the inputs shift handling
® no shift operators are allowed during the evaluation
~~ problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
» simple description of the target architecture filter based on instruction selection
® no handling of advanced operators
~~ problem: CGPE fails in making the most out of any advanced instructions
~~ main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Outline of the talk

2. Approach based on instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Introduction to instruction selection

m Itis a well known problem in compilation ~~ proven to be NP-complete on DAGs

m Usually solved using a tiling algorithm:
> input:
® a DAG representing an arithmetic expression,
e a set of tiles, with a cost for each,
e afunction that associates a cost to a DAG.

» output: a set of covering tiles that minimize the cost function.

m Examples of advanced instructions
» fma on IEEE processors ~» a * b + c with only one final rounding
» mulacconsome DSP ~»a * b + ¢
> shift-and-add instruction on the ST231 ~» a «b + cin1cycle, withb € {1,---,4}

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Motivation of using instruction selection inside CGPE

m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Motivation of using instruction selection inside CGPE

m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

v/ they provide a short proof of optimality in the case of trees
X their method handles fma in DAGs but is not generic

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Motivation of using instruction selection inside CGPE

m Related work: Voronenko and Plschel from the Spiral group

» Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

» Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

v/ they provide a short proof of optimality in the case of trees
X their method handles fma in DAGs but is not generic

m Our goal is twofold:

1. to handle any advanced instruction ~~ described in an external XML file
2. to integrate a numerical verification step in the process of instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

XML architecture description file

<architecture>

<!-- 32 x 32 -> 32-bit unsigned adder -->
<instruction name="add"

type="unsigned"

latency="1"

nodes="add dag 1 dag 2"

macro="static inline
uint32_t __name__(uint32_t a, uint32_t b)
{
X

return (a + b);

gappa="_r_ fixed<-_Fr_,dn>= _1_ + _2_; _Mr_ = _MI_ + _M2_;"

/>

Q) = ggoq =2
</architecture>

m For each instruction, the XML architecture description file contains:

» the name, the type (signed or unsigned), the latency (# cycles),
> a description of the pattern matched by the instruction,
> a C macro for emulating the instruction in software,

» and a piece of Gappa script for computing the error entailed by the instruction
evaluation in fixed-point arithmetic.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

BottomUpDP()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()

2: ImproveCSEDecision()

3: BottomUpDP() + TopDownSelect()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

TopDownSelect()

addition / shift ~~ 1 cycle

|:| shift-and-add ~~ 1 cycle

multiplication ~» 3 cycles

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

The NOLTIS tiling algorithm

Near-OptimaI Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: impreveGSEDecision{)}
3: BettemUpBP{—+TepBewnSeleet()

m Example: how to evaluate ap + ((31 X))+ ((a2- (xx)) < 1))?

= In our case, only the first step of NOLTIS is valuable.

m NOLTIS algorithm mainly relies on the evaluation of a cost function. We have
implemented three different cost functions:

~ number of operator (regardless commun subexpressions)
~ evaluation latency on unbounded parallelism
~ evaluation accuracy, computed by using the piece of Gappa script for each instruction

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Remarks on instruction selection in CGPE

m A separation is achieved between the computation of the intermediate
representation and the code generation process

> we can generate codes according different criteria
> we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available
|

Set of DAGs

Decorated DAGs

polynomial. xml

<polynomial>
<coefficient ... >

> this general approach allows to tackle other
problems (sum, dot-product, ...)

Svariable .. >

1 <fpolynomial>

front-end

architecture.xml

<architecture>

.

middle-end

Jarchitecture>

Code generator

vy v
[C files] [Accuracy certificates

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Remarks on instruction selection in CGPE

m A separation is achieved between the computation of the intermediate
representation and the code generation process

> we can generate codes according different criteria
> we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available

Set of DAGs

Decorated DAGs

polynomial. xml

<polynomial>
<coefficient ... >

> this general approach allows to tackle other
problems (sum, dot-product, ...) g

Svariable .. >

1 <fpolynomial>

architecture.xml

m We are not bounded to basic instructions

<architecture>
- @ ~rf <instruction name="add"
] ‘type="unsigned”

> we can add many others advanced
instructions or basic blocks

middle-end

Jarchitecture>

» this general approach allows to give some
feedback on the eventual need of some
new instructions

Code generator

back-end
“—>

v v
[C files] [Accuracy certificates

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Impact on the number of instructions

. no advanced ins‘tructions — .
ol B add]add == | ™ Remark 1: average reduction
_ i e S of 8.7 % up to 13.75 %
o 38 shift-add right 1
é | | m Remark 2: interest of ST231
£ — shift-and-add for sin(x)
g ¥] implementation
g Ll | ~- reduction of 8.7 %
= e 1 = Remark 3: interest of
28 |- , shift-and-add with right shift
| for cos(x) and log, (1 + x)
% cos(x) log2(1+4x) implementation
~~ reduction of 12.8 % and
Figure: Average number of instructions in 50 synthesized 13.75 %, respectively

codes, for the evaluation of polynomials of degree 5 up to
12 for various elementary functions.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Impact on the latency

m Polynomial: degree-7 polynomial approximating the function cos(x) over [0,2]

m Architecture:

> 1 cycle addition/subtraction and shift-and-add
» 3-cycle multiplication and mulacc

Without tiling ~ With tiling | Speed-up

Horner’s rule 41 34 ~17.07 %
Estrin’s rule 16 14 ~12.5%
Best scheme 15 13 ~ 13.33 %

Table: Latency in # cycles on unbounded parallelism, for various schemes, with and without tiling.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

Outline of the talk

3. Conclusion and perspectives

M2, CNRS) Approach based on instruction selection for fast and certified code generation

Conclusion and perspectives

m Target-dependent code generation for fast and certified polynomial evaluation

> in signed and unsigned fixed point arithmetic

» using filter based on instruction selection, so as to make the most out advanced
instructions

> selection according different criteria: operator count, latency on unbounded
parallelism, accuracy

http://cgpe.gforge.inria.fr/

m Further extensions of CGPE

> to tackle other problems, like summation, dot-product, ...

> to handle other arithmetics like floating-point arithmetic, where the fma instruction is
more and more ubiquitous

> to target other architectures (like FPGAS)

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

http://cgpe.gforge.inria.fr/

15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast
and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506
CNRS, LIRMM, UMR 5506

<> UPVD O

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation

	RAIM 2012
	The CGPE tool
	Approach based on instruction selection
	Conclusion and perspectives
	

