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Summary:

Let a finite set IB of interval bounds be given.

Which properties of IB are necessary (and sufficient)
such that an interval arithmetic over IB satisfies
as many as possible mathematical properties?
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The goal:

For intervals A, B the following should be true without exception flag:

0eA-B & ANB+#0
0eA-B © 0€eAUBRB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B8] = hull(interval(a), interval(3))

or A Clog(exp(A)) foranyA without exception flag

for finitely many interval bounds .
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A standard definition of interval arithmetic

Start with real bounds a, b, c,d € IR and define

[a,b] + [c,d] =[a+c,b + d]
[a,b] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
etc.

Note the interval bounds are real numbers.

Define V,A: IR — IF
and continue with floating-point bounds @,b,¢,d € TF :

[a,b] + [¢,d] = [V(@+ &), A + d)]
etc.
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Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

This allows verified floating-point bounds for x o y or f(x)

for all real x,y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

0-x = [0, 0] for all intervals x.

So far, so good.
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Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1, o0) in IEEE 754,

so naturally inf(x) = 1 and sup(x) = co.

Since x C IR for all intervals x, it seems natural to define

interval(co) := 0 .
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Unexpected, wrong results [

Consider
10x+5 ~

L I.

f(x) =

cube(x) = x°

is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval (inf(xx)); yyinf
xxsup = num2interval (sup(xx)); yysup
yy = convexHull(yyinf,yysup);

xxinf*xxinf*xxinf;
XXSUpP*XXSuUp*xXxsup;

Then zz=f (nums2interval (0, 1000)) yields zz=[4, 10004],

suggesting f has no positive real root

without error message! But ...




Unexpected, wrong results II

... there is a positive root: Graph of f between —0.6 and 3
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Unexpected, wrong results III

As before, zz=nums2interval (8, 1000) implies xx = exp(zz)=[1, )

= xxsup = num2interval (sup(xx)) =0

hence
3
(e[0,1000]) C cube(exp(nums2interval (0,1000))) = [1,1],

a fatal mistake.
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Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:

“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

And he admits:

“I expect that the nonstandardNumber flag will never be inspected, except
for debugging purposes.”

However, debugging requires a suspicion
(in the example f(nums2interval (0, 1000)) C [4, 10004]).
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Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

What about A(+c0) ?

A natural definition is
A(r)=min{f € IF: r < f}forr € IR" with  min(() = oo,
a common definition in optimization.

In other words, if there is no f with r < f, then the result is oo.

Moreover, V(r) = —=A(-r).
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Definition of directed rounding II

The natural definition num2interval (r)= [V(r), A(r)] for r € IR* implies

num2interval(co) = (realmax, oo]

Hence

3
(e[O,lOOO]) C cube(exp(nums2interval(0,1000))) = [1,)

Moreover, a best possible real interval [ry, r;] 1s rounded
into the best possible floating-point interval [V(r)), A(ry)],

which may serve to define all interval operations including functions.
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Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0,realmax] + 1 = [1,00) =: xx with co ¢ xx, but
I/xx=10,1] =: yywith O € yy.

Define Huge and Tiny ?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF ?

3) Not necessarily inf(xx), sup(xx) € xx for intervals xx.
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The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, oo s (ab)used to express something “huge”, not infinity.

A true oo, like 1og(0), is most likely an error.

Typical examples are
exp(1000), 2 - realmax, etc.

but not 1/0, cot(0), etc.

[An exception is infeasibility in optimization, please ask later.]




Rather than just defining some new rounding or interval arithmetic,

we aim on a mathematical foundation.
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Interval arithmetic over finitely many bounds

B = {[la,b] : a,b € B, a<b} U () the set of proper intervals.
range([[a, b]) = aUb, range(llIB) = b1Uby .
B is a complete lattice; 1B admissible & range(IB) = IR.

Interval operations o : IIIB x B — IIB for o € {+, —, -, /} are defined by

AoB:={Ce€llB:aoBeC forall acA,Bec B}
Define ¢ : R — IIIB with ¢(¢) := ({C € lIIB : € € C}

Finallyﬁ =1IIB U {Nal}; A/B=NalforOe€eB.
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B := {{f}: f € IF} is weakly admissible.

B :={{v}:velN,4 <v <9U{(—00,0),[3.14,3.15], [20, c0)} is admissi-
ble.

IB :={N, Py} with N = (—00,0)and Py = [0, c0) is admissible.

But (=5)/3 = o(=5)/ ¢ (3) = N/Py = NaI and (-5)/3 & o(=5)/ ¢ (3).

B :={N,0,P} with N = (—c0,0)and P = (0, o) is also admissible.

Then (=5)/3 — o(=5)/ ¢ (3) = N/P = N and (=5)/3 € o(=5)/ ¢ (3).
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Th. 1 LetIB be admissible and {0}, {1}, {a},{1/a} € B for 0 < a € IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} € IB. Then

A-B=10,0] = A=1[0,0] or B=1[0,0].

Th. 3 Let IB be weakly admissible. Then

aof € d(a)o o(B) foro € {+,—,-}and all @, 8 € IR

is true if and only if IB is admissible.

Note that division is excluded. Problem: 0 € ¢(8) for 8 # 0.
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Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around p € IR if there are #, t, € IB with
supty =inf 1, = p and p&HUb.

Note {p} may be an element of IB or not.

Th. 4 Let IB be admissible. Then

foro e {+,—,-,/} and all @,8 € IR,
@op € s(@)os(p) B # 0 in case of division,

if and only if IB is dense around 0.

Th. 5 Let IB be admissible and dense around 0. Then for A, B # 0,

0O€A-B = 0eA or 0OeB.
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Th. 6 LetIB be admissible, and IR, ¢ IB, B # 0,0 ¢ B be given. Then
0€A/B = 0€eA

if and only if IB is dense around O.

Th. 7 Let IB be admissible and dense around 0. Then
0€eA-B & ANB#0.

Th. 8 Let IB be admissible and IR, ¢ IB. Then
BCA/(A/B) forallA # 0 withO¢ AU B

if and only if IB is dense around O.
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For admissible IB being dense around O it follows

0eA-B & ANB+0
0eA-B © 0€AUB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B] = hull(interval(a), interval(5))

or A Clog(exp(A)) forany interval A,

all without exception flag.

Despite IB being admissible and dense around O there is any freedom!
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Define H := (realmax, o) HUGE
T :=(0,realmin) TINY

Then the set of interval bounds

B:={{f}: feF}U{-H,-T,T, H} is admissible and dense around O .

The main differences to the interval to-be standard IEEE P1788 are

1) coisreplacedby H and 2) T is introduced.

Where is the beef?
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Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0, 1] = [1, c0) with flag, or = NaI.

New 1/exp(—x) = 1/[T,1] = [[1, H]] = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x?) = log([0, 1]) = (—o0,0] with flag, or = NalI.

New log(x?) = log([T, 1]) = [-H,0] without exception .

New log(exp(I-H, H1)) = log(IT, H1) = [-H, H]

etc.
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1~ = {(pred(1), 1)} and 17 = {(1, succ(1)} to IB. Then

tanh([[0,30]) = [0,17]], 1-[0,1"]=1[7,1].

Add E = {e} to IB. Then

exp(log([1,E])) = [1,E]] and log([E,E]) =1[1,1].

etc.

Reference:
S.M. Rump: Interval arithmetic over finitely many endpoints,
to appear in BIT, 2012.
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