Interval arithmetic over finitely many endpoints

S.M. Rump, Hamburg/Tokyo

Summary:

Let a finite set IB of interval bounds be given.

Which properties of IB are necessary (and sufficient)
such that an interval arithmetic over IB satisfies
as many as possible mathematical properties?

The goal:

For intervals A, B the following should be true without exception flag:

0eA-B & ANB+#0
0eA-B © 0€eAUBRB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

The goal:

For intervals A, B the following should be true without exception flag:

0eA-B & ANB+#0
0eA-B © 0€eAUBRB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B8] = hull(interval(a), interval(3))

The goal:

For intervals A, B the following should be true without exception flag:

0eA-B & ANB+#0
0eA-B © 0€eAUBRB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B8] = hull(interval(a), interval(3))

or A Clog(exp(A)) foranyA without exception flag

for finitely many interval bounds .

A standard definition of interval arithmetic

Start with real bounds a, b, c,d € IR and define

[a,b] + [c,d] =[a+c,b + d]
[a,b] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
etc.

A standard definition of interval arithmetic

Start with real bounds a, b, c,d € IR and define

[a,b] + [c,d] =[a+c,b + d]
[a,b] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
etc.

Note the interval bounds are real numbers.

A standard definition of interval arithmetic

Start with real bounds a, b, c,d € IR and define

[a,b] + [c,d] =[a+c,b + d]
[a,b] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
etc.

Note the interval bounds are real numbers.

Define V,A: IR —» F

A standard definition of interval arithmetic

Start with real bounds a, b, c,d € IR and define

[a,b] + [c,d] =[a+c,b + d]
[a,b] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
etc.

Note the interval bounds are real numbers.

Define V,A: IR — IF
and continue with floating-point bounds @,b,¢,d € TF :

[a,b] + [¢,d] = [V(@+ &), A + d)]
etc.

Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

This allows verified floating-point bounds for x o y or f(x)

for all real x,y, also in case of overflow.

Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

This allows verified floating-point bounds for x o y or f(x)

for all real x,y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

This allows verified floating-point bounds for x o y or f(x)

for all real x,y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

0-x = [0, 0] for all intervals x.

Treatment of overflow

To cover overflow, an extension V,A : R — IF*

with IF* := IF U {—o0, oo} is mandatory (= exception-free).

This allows verified floating-point bounds for x o y or f(x)

for all real x,y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

0-x = [0, 0] for all intervals x.

So far, so good.

Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1, o0) in IEEE 754,

Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1, o0) in IEEE 754,

so naturally inf(x) = 1 and sup(x) = co.

Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1, o0) in IEEE 754,

so naturally inf(x) = 1 and sup(x) = co.

Since x C IR for all intervals x, it seems natural to define

interval(co) := 0 .

Unexpected, wrong results [

Consider
10x+5 _

) l.

f(x) =

Unexpected, wrong results [

Consider

B 10x+ 5

—(ex)3 —1.

JF(x)

cube(x) := x> is monotone over IR, suggesting the implementation

function yy = cube(xx)
xxinf = num2interval (inf(xx)); yyinf
xxsup = num2interval (sup(xx)); yysup
yy = convexHull(yyinf,yysup);

xxinf*xxinf*xxinf;
XXSUpP*XXSuUp*xXxsup;

Unexpected, wrong results [

Consider
10x+5 ~

L I.

f(x) =

cube(x) = x°

is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval (inf(xx)); yyinf
xxsup = num2interval (sup(xx)); yysup
yy = convexHull(yyinf,yysup);

xxinf*xxinf*xxinf;
XXSUpP*XXSuUp*xXxsup;

Then zz=f (nums2interval (0, 1000)) yields zz=[4, 10004],

suggesting f has no positive real root

Unexpected, wrong results [

Consider
10x+5 ~

L I.

f(x) =

cube(x) = x°

is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval (inf(xx)); yyinf
xxsup = num2interval (sup(xx)); yysup
yy = convexHull(yyinf,yysup);

xxinf*xxinf*xxinf;
XXSUpP*XXSuUp*xXxsup;

Then zz=f (nums2interval (0, 1000)) yields zz=[4, 10004],

suggesting f has no positive real root

without error message! But ...

Unexpected, wrong results II

... there is a positive root: Graph of f between —0.6 and 3

Unexpected, wrong results III

As before, zz=nums2interval (8, 1000) implies xx = exp(zz)=[1,)

Unexpected, wrong results III

As before, zz=nums2interval (8, 1000) implies xx = exp(zz)=[1,)

= xxsup = num2interval (sup(xx)) =0

Unexpected, wrong results III

As before, zz=nums2interval (8, 1000) implies xx = exp(zz)=[1,)

= xxsup = num2interval (sup(xx)) =0

hence
3
(e[0,1000]) C cube(exp(nums2interval (0,1000))) = [1,1],

a fatal mistake.

Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:

“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:

“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

And he admits:

“I expect that the nonstandardNumber flag will never be inspected, except
for debugging purposes.”

Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:

“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

And he admits:

“I expect that the nonstandardNumber flag will never be inspected, except
for debugging purposes.”

However, debugging requires a suspicion
(in the example f(nums2interval (0, 1000)) C [4, 10004]).

Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

What about A(+c0) ?

Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

What about A(+c0) ?

A natural definition is
A(r)=min{f € IF: r < f}forr € IR"

a common definition in optimization.

with min(() = oo,

Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

What about A(+c0) ?

A natural definition is
A(r)=min{f € IF: r < f}forr € IR" with min(Q) = oo,

a common definition in optimization.

In other words, if there is no f with r < f, then the result is oo.

Definition of directed rounding I

Clearly A(r) = min{f € IF: r < f} forr € R.

What about A(+c0) ?

A natural definition is
A(r)=min{f € IF: r < f}forr € IR" with min(() = oo,
a common definition in optimization.

In other words, if there is no f with r < f, then the result is oo.

Moreover, V(r) = —=A(-r).

Definition of directed rounding II

The natural definition num2interval (r)= [V(r), A(r)] for r € IR* implies

num2interval(co) = (realmax, oo]

Definition of directed rounding II

The natural definition num2interval (r)= [V(r), A(r)] for r € IR* implies

num2interval(co) = (realmax, oo]

Hence

3
(e[OJOOO]) C cube(exp(nums2interval(0,1000))) = [I,o)

Definition of directed rounding II

The natural definition num2interval (r)= [V(r), A(r)] for r € IR* implies

num2interval(co) = (realmax, oo]

Hence

3
(e[O,lOOO]) C cube(exp(nums2interval(0,1000))) = [1,)

Moreover, a best possible real interval [ry, r;] 1s rounded
into the best possible floating-point interval [V(r)), A(ry)],

which may serve to define all interval operations including functions.

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

[0, realmax] + 1 = [1, 00) =: xx with co ¢ xx, but

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0, realmax] + 1 = [1, 00) =: xx with co ¢ xx, but

I/xx=10,1] =: yywith O € yy.

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0, realmax] + 1 = [1, 00) =: xx with co ¢ xx, but
I/xx=10,1] =: yywith O € yy.

Define Huge and Tiny ?

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0,realmax] + 1 = [1,00) =: xx with co ¢ xx, but
I/xx=10,1] =: yywith O € yy.

Define Huge and Tiny ?

2) A two-step definition: First intervals over IR, then over IF.

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0,realmax] + 1 = [1,00) =: xx with co ¢ xx, but
I/xx=10,1] =: yywith O € yy.

Define Huge and Tiny ?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF ?

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
[0,realmax] + 1 = [1,00) =: xx with co ¢ xx, but
I/xx=10,1] =: yywith O € yy.

Define Huge and Tiny ?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF ?

3) Not necessarily inf(xx), sup(xx) € xx for intervals xx.

The role of co in numerical analysis

I claim

The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, oo s (ab)used to express something “huge”, not infinity.

The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, oo s (ab)used to express something “huge”, not infinity.

A true oo, like 1og(0), is most likely an error.

The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, oo s (ab)used to express something “huge”, not infinity.

A true oo, like 1og(0), is most likely an error.

Typical examples are
exp(1000), 2 - realmax, etc.

but not 1/0, cot(0), etc.

The role of co in numerical analysis

I claim
If co occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, oo s (ab)used to express something “huge”, not infinity.

A true oo, like 1og(0), is most likely an error.

Typical examples are
exp(1000), 2 - realmax, etc.

but not 1/0, cot(0), etc.

[An exception is infeasibility in optimization, please ask later.]

Rather than just defining some new rounding or interval arithmetic,

we aim on a mathematical foundation.

Interval arithmetic over finitely many bounds

Interval arithmetic over finitely many bounds

MR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [-2, 7], (0, 1] or (=o0, V2).

Interval arithmetic over finitely many bounds

MR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [-2, 7], (0, 1] or (=o0, V2).

IB = {by,..., by} 1s a weakly admissible set of interval bounds b; € IR iff

a€eb, Beby = a<pf for 1<i<k.

Interval arithmetic over finitely many bounds

MR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [-2,7], (0, 1] or (—co, V2).

IB = {by,..., by} 1s a weakly admissible set of interval bounds b; € IR iff

a€eb, Beby = a<pf for 1<i<k.

IB = {by,...,b}is totally ordered by b; <b; for 1 <i<j<k.

Interval arithmetic over finitely many bounds

MR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [-2,7], (0, 1] or (—co, V2).

IB = {by,..., by} 1s a weakly admissible set of interval bounds b; € IR iff

a€eb, Beby = a<pf for 1<i<k.
IB = {by,...,b}is totally ordered by b; <b; for 1 <i<j<k.

IB = {b,..., b} is an admissible set of interval bounds ift

infby = —c0 and supby = 0.

Interval arithmetic over finitely many bounds

MR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [-2,7], (0, 1] or (—co, V2).

IB = {by,..., by} 1s a weakly admissible set of interval bounds b; € IR iff

a€eb, Beby = a<pf for 1<i<k.
IB = {by,...,b}is totally ordered by b; <b; for 1 <i<j<k.

IB = {b,..., b} is an admissible set of interval bounds ift

infby = —c0 and supby = 0.

B = {[la,b] : a,b € B, a<b} U () the set of proper intervals.

Interval arithmetic over finitely many bounds

B = {[[a,b] : a,b € B, a<b} U O the set of proper intervals .

Interval arithmetic over finitely many bounds

B = {[[a,b] : a,b € B, a<b} U O the set of proper intervals .

range([[a, b]) = aUb, range(llIB) = b1Uby .

Interval arithmetic over finitely many bounds

B = {[[a,b] : a,b € B, a<b} U O the set of proper intervals .
range([[a, b]) = aUb, range(llIB) = b1Uby .

B is a complete lattice; 1B admissible & range(IB) = IR.

Interval arithmetic over finitely many bounds

B = {[la,b] : a,b € B, a<b} U () the set of proper intervals.
range([[a, b]) = aUb, range(llIB) = b1Uby .
B is a complete lattice; 1B admissible & range(IB) = IR.

Interval operations o : IIIB x B — IIB for o € {+, —, -, /} are defined by

AoB:={Ce€llB:aoBeC forall acA,Bec B}

Interval arithmetic over finitely many bounds

B = {[la,b] : a,b € B, a<b} U () the set of proper intervals.
range([[a, b]) = aUb, range(llIB) = b1Uby .
B is a complete lattice; 1B admissible & range(IB) = IR.

Interval operations o : IIIB x B — IIB for o € {+, —, -, /} are defined by

AoB:={Ce€llB:aoBeC forall acA,Bec B}

Define ¢ : R — IIIB with ¢(¢) := ({C € lIIB : € € C}

Interval arithmetic over finitely many bounds

B = {[la,b] : a,b € B, a<b} U () the set of proper intervals.
range([[a, b]) = aUb, range(llIB) = b1Uby .
B is a complete lattice; 1B admissible & range(IB) = IR.

Interval operations o : IIIB x B — IIB for o € {+, —, -, /} are defined by

AoB:={Ce€llB:aoBeC forall acA,Bec B}
Define ¢ : R — IIIB with ¢(¢) := ({C € lIIB : € € C}

Finallyﬁ =1IIB U {Nal}; A/B=NalforOe€eB.

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

B:={{yv}:velN,4 <v <9}U{(-00,0),[3.14,3.15],[20, o)} is admissi-
ble.

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

B:={{yv}:velN,4 <v <9}U{(-00,0),[3.14,3.15],[20, o)} is admissi-
ble.

IB :={N, Py} with N = (—00,0)and Py = [0, c0) is admissible.

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

B :={{v}:velN,4 <v <9U{(—00,0),[3.14,3.15], [20, c0)} is admissi-
ble.

IB :={N, Py} with N = (—00,0)and Py = [0, c0) is admissible.

But (=5)/3 = o(=5)/ ¢ (3) = N/Py = NaI and (-5)/3 & o(=5)/ ¢ (3).

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

B :={{v}:velN,4 <v <9U{(—00,0),[3.14,3.15], [20, c0)} is admissi-
ble.

IB :={N, Py} with N = (—00,0)and Py = [0, c0) is admissible.

But (=5)/3 = o(=5)/ ¢ (3) = N/Py = NaI and (-5)/3 & o(=5)/ ¢ (3).

B :={N,0,P} with N = (—c0,0)and P = (0, o) is also admissible.

Interval arithmetic over finitely many bounds: Examples

B := {{f}: f € IF} is weakly admissible.

B :={{v}:velN,4 <v <9U{(—00,0),[3.14,3.15], [20, c0)} is admissi-
ble.

IB :={N, Py} with N = (—00,0)and Py = [0, c0) is admissible.

But (=5)/3 = o(=5)/ ¢ (3) = N/Py = NaI and (-5)/3 & o(=5)/ ¢ (3).

B :={N,0,P} with N = (—c0,0)and P = (0, o) is also admissible.

Then (=5)/3 — o(=5)/ ¢ (3) = N/P = N and (=5)/3 € o(=5)/ ¢ (3).

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 LetIB be admissible and {0}, {1}, {a},{1/a} € B for 0 < a € IR.

Then neither interval addition nor multiplication is associative.

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 LetIB be admissible and {0}, {1}, {a},{1/a} € B for 0 < a € IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} € IB. Then

A-B=10,0] = A=1[0,0] or B=1[0,0].

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 LetIB be admissible and {0}, {1}, {a},{1/a} € B for 0 < a € IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} € IB. Then

A-B=10,0] = A=1[0,0] or B=1[0,0].

Th. 3 Let IB be weakly admissible. Then

aof € d(a)o o(B) foro € {+,—,-}and all @, 8 € IR

is true if and only if IB is admissible.

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 LetIB be admissible and {0}, {1}, {a},{1/a} € B for 0 < a € IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} € IB. Then

A-B=10,0] = A=1[0,0] or B=1[0,0].

Th. 3 Let IB be weakly admissible. Then

aof € d(a)o o(B) foro € {+,—,-}and all @, 8 € IR

is true if and only if IB is admissible.

Note that division is excluded. Problem: 0 € ¢(8) for 8 # 0.

Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around p € IR if there are #, t, € IB with

supty =inf t, =p and p&HuUtb.

Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around p € IR if there are #, t, € IB with
supty =inf t, =p and p&HuUtb.

Note {p} may be an element of IB or not.

Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around p € IR if there are #, t, € IB with
supty =inf 1, = p and p&HUb.

Note {p} may be an element of IB or not.

Th. 4 Let IB be admissible. Then

foro e {+,—,-,/} and all @,8 € IR,
@of € o(@)oo(p) B # 0 in case of division,

if and only if IB is dense around 0.

Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around p € IR if there are #, t, € IB with
supty =inf 1, = p and p&HUb.

Note {p} may be an element of IB or not.

Th. 4 Let IB be admissible. Then

foro e {+,—,-,/} and all @,8 € IR,
@op € s(@)os(p) B # 0 in case of division,

if and only if IB is dense around 0.

Th. 5 Let IB be admissible and dense around 0. Then for A, B # 0,

0O€A-B = 0eA or 0OeB.

Interval arithmetic over finitely many bounds: Theorems III

Th. 6 LetIB be admissible, and IR, ¢ IB, B # 0,0 ¢ B be given. Then
0€A/B = 0€eA

if and only if IB is dense around 0.

Interval arithmetic over finitely many bounds: Theorems III

Th. 6 LetIB be admissible, and IR, ¢ IB, B # 0,0 ¢ B be given. Then
0€A/B = 0€eA

if and only if IB is dense around O.

Th. 7 Let IB be admissible and dense around 0. Then
0€eA-B & ANB#0.

Interval arithmetic over finitely many bounds: Theorems III

Th. 6 LetIB be admissible, and IR, ¢ IB, B # 0,0 ¢ B be given. Then
0€A/B = 0€eA

if and only if IB is dense around O.

Th. 7 Let IB be admissible and dense around 0. Then
0€eA-B & ANB#0.

Th. 8 Let IB be admissible and IR, ¢ IB. Then
BCA/(A/B) forallA # 0 withO¢ AU B

if and only if IB is dense around O.

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around O it follows

0cA-B & ANB=+#0
0eA-B © 0€AUB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around O it follows

0eA-B & ANB+0
0eA-B © 0€AUB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B] = hull(interval(a), interval(5))

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around O it follows

0eA-B & ANB+0
0eA-B © 0€AUB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B] = hull(interval(a), interval(5))

or A Clog(exp(A)) forany interval A,

all without exception flag.

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around O it follows

0eA-B & ANB+0
0eA-B © 0€AUB
ACB/(B/A) if0¢AUB

avoiding problems with underflow, and

a € interval(a)
[, B] = hull(interval(a), interval(5))

or A Clog(exp(A)) forany interval A,

all without exception flag.

Despite IB being admissible and dense around O there is any freedom!

Interval arithmetic over finitely many bounds: Examples

Define H := (realmax, o) HUGE
T :=(0,realmin) TINY

Interval arithmetic over finitely many bounds: Examples

Define H := (realmax, o) HUGE
T :=(0,realmin) TINY

Then the set of interval bounds

B:={{f}: feF}U{-H,-T,T, H} is admissible and dense around O .

Interval arithmetic over finitely many bounds: Examples

Define H := (realmax, o) HUGE
T :=(0,realmin) TINY

Then the set of interval bounds

B:={{f}: feF}U{-H,-T,T, H} is admissible and dense around O .

The main differences to the interval to-be standard IEEE P1788 are

1) coisreplacedby H and 2) T is introduced.

Interval arithmetic over finitely many bounds: Examples

Define H := (realmax, o) HUGE
T :=(0,realmin) TINY

Then the set of interval bounds

B:={{f}: feF}U{-H,-T,T, H} is admissible and dense around O .

The main differences to the interval to-be standard IEEE P1788 are

1) coisreplacedby H and 2) T is introduced.

Where is the beef?

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0, 1] = [1, 00) with flag, or = NaI.

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0,1] = [1, o) with flag, or = NaI.

New 1/exp(—x) = 1/[T,1] = [[1, H]] = exp(x) without exception .

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0, 1] = [1, 00) with flag, or = NaI.

New 1/exp(—x) = 1/[T,1] = [[1, H]] = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x?) = log([0, 1]) = (—o0,0] with flag, or = NalI.

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0, 1] = [1, 00) with flag, or = NaI.

New 1/exp(—x) = 1/[T,1] = [[1, H]] = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x?) = log([0, 1]) = (—o0,0] with flag, or = NalI.

New log(x?) = log([T, 1]) = [-H,0] without exception .

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1, o), but ...
1/exp(—x) = 1/[0, 1] = [1, c0) with flag, or = NaI.

New 1/exp(—x) = 1/[T,1] = [[1, H]] = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x?) = log([0, 1]) = (—o0,0] with flag, or = NalI.

New log(x?) = log([T, 1]) = [-H,0] without exception .

New log(exp(I-H, H1)) = log(IT, H1) = [-H, H]

etc.

Interval arithmetic over finitely many bounds: Additional quantities

Add 17 = {(pred(1), 1)} and 1* = {(1, succ(1)} to IB. Then

Interval arithmetic over finitely many bounds: Additional quantities

Add 17 = {(pred(1), 1)} and 1* = {(1, succ(1)} to IB. Then

tanh([[0,30]) = [0,17]], 1-[0,1"]=1[7,1].

Interval arithmetic over finitely many bounds: Additional quantities

Add 17 = {(pred(1), 1)} and 1* = {(1, succ(1)} to IB. Then

tanh([[0,30]) = [0,17]], 1-[0,1"]=1[7,1].

Add E = {e} to IB. Then

Interval arithmetic over finitely many bounds: Additional quantities

Add 1~ = {(pred(1), 1)} and 17 = {(1, succ(1)} to IB. Then

tanh([[0,30]) = [0,17]], 1-[0,1"]=1[7,1].

Add E = {e} to IB. Then

exp(log([1,E])) = [1,E]] and log([E,E]) =1[1,1].

Interval arithmetic over finitely many bounds: Additional quantities

Add 1~ = {(pred(1), 1)} and 17 = {(1, succ(1)} to IB. Then

tanh([[0,30]) = [0,17]], 1-[0,1"]=1[7,1].

Add E = {e} to IB. Then

exp(log([1,E])) = [1,E]] and log([E,E]) =1[1,1].

etc.

Reference:
S.M. Rump: Interval arithmetic over finitely many endpoints,
to appear in BIT, 2012.

	resultado2:
	crono:
	time:
	currentdate:
	resultado1:
	crono:
	time:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:
	crono:

