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IVP:
u′ = f (t ,u), u(t0) = u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ Rm, tend > t0
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IVP:
u′ = f (t ,u), u(t0) = u0, t ∈ t = [t0, tend]
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IVP:
u′ = f (t ,u), u(t0) = u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ Rm, tend > t0
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Interval IVP:

u′ = f (t ,u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0
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Interval Methods for ODEs

Taylor Models

Taylor Model Methods for ODEs
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Interval Methods for ODEs
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Autonomous IVP:
u′ = f (u), u(t0) = u0,

where f : D ⊂ Rm → Rm, f ∈ Cn(D), u0 ∈ D

Taylor method: u(t) =
n

∑
k=0

(t − t0)k

k !
u(k)(t0) + Rn

Automatic (recursive) computation of Taylor coefficients:

u(0) = f [0](u) = u, u(1) = f [1](u) = f (u),

1
k !

u(k) = f [k ](u) =
1
k

(
∂f [k−1]

∂u
f

)
(u) for k ≥ 2



Moore’s enclosure method
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Interval IVP:

u′ = f (u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend],

where f : D ⊂ Rm → Rm, f ∈ Cn(D), u0 ⊂ D

Interval iteration: For j = 1,2, . . . :

A priori enclosure: v j ⊇ u(t) for all t ∈ [tj−1, tj ] ("Alg. I")

Truncation error: z j := hn+1
j f [n+1](v j ), hj = tj − tj−1

u(tj ) ∈ uj := uj−1 +
n

∑
k=1

hk
j f [k ](uj−1) + z j ("Algorithm II")
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t0 t1 t2

u0
u1

u2
v1

v2

t

u



A Priori Enclosures
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Constant a priori enclosure by Picard iteration: Find hj , v j such that

uj−1 + [0,hj ]f (v j ) ⊆ v j

Step size restrictions: Explicit Euler steps

A priori enclosures using Picard iterations:
Interval polynomials: Lohner 1988, Corliss & Rihm 1996, Makino 1998,
Nedialkov & Jackson 2001
Arbitrary interval functions: Rauh, Auer & Hofer 2005

Alternative a priori bounds: Neumaier 1994, N. 1999, N. 2007



Refinement step
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The iteration

uj = uj−1 +
n

∑
k=1

hk
j f [k ](uj−1) + z j

is width increasing:

w(uj ) = w(uj−1) +
n

∑
k=1

hk
j w
(
f [k ](uj−1)

)
+ w(z j )

→ Reduce overestimation by improved evaluation of rhs



Modifications of Algorithm II

13 SCAN 2012, Novosibirsk Verified Integration of ODEs with Taylor Models Markus Neher, KIT

KIT

Moore, Eijgenraam, Lohner: Local coordinate systems

Kühn: Zonotopes

Nedialkov & Jackson: Hermite-Obreshkov-Method

Rihm: Implicit methods

Petras & Hartmann, Bouissou & Martel: Runge-Kutta-Methods



Dependency Reduction: Direct Interval Method

14 SCAN 2012, Novosibirsk Verified Integration of ODEs with Taylor Models Markus Neher, KIT

KIT

Apply mean value form to f [k ](uj−1): For fixed ûj−1 ∈ uj−1,

{
f [k ](uj−1) | uj−1 ∈ uj−1

}
⊆ f [k ](ûj−1) + J

(
f [k ](uj−1)

)
(uj−1 − ûj−1),

where J
(
f [k ]
)

is the Jacobian of f [k ]

Let I denote the identity matrix and let

S j−1 := I +
n

∑
k=1

hk
0J
(
f [k ](uj−1)

)
, z j = hn+1

0 f [n](v j )

Then

u(tj ;u0) ∈ uj := ûj−1 +
n

∑
k=1

hk
j f [k ](ûj−1) + z j + S j−1(uj−1 − ûj−1)



Wrapping Effect in Global Error Propagation
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Wrapping effect: S j−1(uj−1 − ûj−1) may overestimate

S = {Sj−1(uj−1 − ûj−1) | Sj−1 ∈ S j−1, uj−1 ∈ uj−1}

→ propagate S as a parallelepiped

û0 := m(u0), B0r0 = u0 − û0, B0 = I; for some nonsingular Bj−1:

ûj = ûj−1 +
n

∑
k=1

hk
j−1f [k ](ûj−1) + m(z j ),

uj = ûj−1 +
n

∑
k=1

hk
j−1f [k ](ûj−1) + z j + (S j−1Bj−1)r j−1,


ûj : approximate point solution for the central IVP

z j : local error; r j : global error



Global Error Propagation
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Global error:

r j =
(

B−1
j (S j−1Bj−1)

)
r j−1 + B−1

j (z j −m(z j ))

Direct method: Bj = I

Pep method (Eijgenraam, Lohner): Bj = m(S j−1Bj−1)

QR method (Lohner): m(S j−1Bj−1) = QR, Bj := Q

Blunting method (Berz, Makino): Bj = m(S j−1Bj−1) + εQj , ε > 0

+ = ⊂



Wrapping Effect
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Direct method:

Pep method:

QR method:
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Taylor Models



Symbolic Enhancements of IA
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Ultra-arithmetic (arbitrary basis functions; Kaucher & Miranker, 1980s)

Boundary Arithmetic (multivariate Taylor forms; Lanford, Eckmann,
Koch & Wittwer, 1980s)

Taylor models (Berz & Makino, 1990s–today)



Taylor Models of Type I
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x ⊂ Rm, f : x → R, f ∈ Cn+1, x0 ∈ x ;

f (x) = pn,f (x − x0) + Rn,f (x − x0), x ∈ x

(pn,f Taylor polynomial, Rn,f remainder term;
in the following: x0 = 0)

Interval remainder bound of order n of f on x :

∀x ∈ x : Rn,f (x) ∈ in,f

Taylor model Tn,f = (pn,f , in,f ) of order n of f :

∀x ∈ x : f (x) ∈ pn,f (x) + in,f



Taylor Models: Example
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x = [− 1
2 ,

1
2 ], x ∈ x :

ex = 1 + x +
1
2

x2 +
1
6

x3eξ , x, ξ ∈ x ,

cos x = 1− 1
2

x2 +
1
6

x3 sin ξ, x, ξ ∈ x ,

T2,ex = 1 + x + 1
2x2 + [−0.035,0.035], x ∈ x ,

T2,cos x = 1− 1
2x2 + [−0.010,0.010], x ∈ x



TM Arithmetic
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Paradigm for TM Arithmetic:

pn,f is processed symbolically to order n

Higher order terms are enclosed into the remainder interval



TMA: Addition and Multiplication
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Tn,f±g := Tn,f ± Tn,g := (pn,f ± pn,g, in,f ± in,g),

Tn,α·f := α · Tn,f := (α · pn,f , α · in,f ) (α ∈ R),

Tn,f ·g := Tn,f · Tn,g := (pn,f ·g, in,f ·g),

where

pn,f (x) · pn,g(x) = pn,f ·g(x) + pe(x),

Rg (pe) ⊆ ipe , Rg (pn,f ) ⊆ ipn,f , Rg (pn,g) ⊆ ipn,g ,

f (x) · g(x) ∈ pn,f ·g(x) + ipe + ipn,f in,g + in,f
(
ipn,g + in,g

)︸ ︷︷ ︸
=:in,f ·g



Numerical Example
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Multiplication: x = [− 1
2 ,

1
2 ], x ∈ x :

T2,ex · T2,cos x ⊆ (1 + x + 1
2 x2)(1− 1

2 x2) + Rg
(

1 + x + 1
2 x2

)
[−0.010,0.010]

+[−0.035,0.035]
(

Rg
(

1− 1
2 x2

)
+ [−0.010,0.010]

)
⊆ (1 + x) + Rg

(
− 1

2 x3 − 1
4 x4

)
+ [−0.218,0.218]

⊆ 1 + x + [−0.281,0.281]



TMA: Polynomials, Standard Functions
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If Tn,f = (pn,f , in,f ) is a Taylor model for f , then Tn,∑ aνf ν

is a Taylor model for ∑ aνf ν

Standard functions: ϕ ∈ {exp, ln, sin, cos, . . .}
Taylor model for ϕ(f ) = ϕ(pn,f + in,f ):

Special treatment of the constant part in pn,f

Evaluate pn,ϕ for the non-constant part of pn,f



Taylor Model for Exponential Function
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x ∈ x , c := f (0), h(x) := f (x)− c:

pn,f (x) = pn,h(x) + c, in,h = in,f

exp
(
f (x)

)
= exp

(
c + h(x)

)
= exp(c) · exp

(
h(x)

)
= exp(c) ·

{
1 + h(x) +

1
2

(
h(x)

)2
+ . . . +

1
n!
(
h(x)

)n
}

+ exp(c) · 1
(n + 1)!

(
h(x)

)n+1
exp

(
θ · h(x)

)︸ ︷︷ ︸, 0 < θ < 1

⊆ (Rg (h) + i)n+1 exp
(
[0,1] · (Rg (h) + i)

)



Taylor Model for Exponential Function
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Numerical example: TM for ecos x , x ∈ x = [− 1
2 ,

1
2 ],

cos x ∈ p2,cos(x) + i = 1− 1
2

x2 + [−0.010,0.010]

We have c = 1, h(x) = − 1
2x2, Rg (h) + i = [−0.135,0.10] =: j

ecos x ∈ e
{

1 + h + i +
1
2
(h + i)2

}
+

e
6

j3 exp([0,1] · j)

⊆ e
{

1− 1
2x2

}
+ e i +

e
2

j2 +
e
6

j3 exp([0,1] · j)

= e
{

1− 1
2x2

}
+ [−0.031,0.053]



Taylor Models of Type II
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Taylor model: U := pn(x) + i, x ∈ x , x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n)

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }

Range of a TM: Rg (U ) = {z = p(x) + ξ | x ∈ x , ξ ∈ i} ⊂ Rm



Taylor Models of Type II
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Taylor model: U := pn(x) + i, x ∈ x , x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n)

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }

Range of a TM: Rg (U ) = {z = p(x) + ξ | x ∈ x , ξ ∈ i} ⊂ Rm

Ex. 1: U :=
(

1
5

)
+

(
2 0
0 1

)
·
(

x1
x2

)
=

(
1 + 2x1
5 + x2

)
, x1, x2 ∈ [−1,1]

Rg (U ) =
(

1
5

)
+

(
2 0
0 1

)
·
(

[−1,1]
[−1,1]

)
=

(
[−1,3]
[4,6]

)



Taylor Models of Type II
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Taylor model: U := pn(x) + i, x ∈ x , x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n)

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }

Range of a TM: Rg (U ) = {z = p(x) + ξ | x ∈ x , ξ ∈ i} ⊂ Rm

Ex. 2: U :=
(

x1
2 + x2

1 + x2

)
, x1, x2 ∈ [−1,1]

Rg (U ):

−1 1

2

x1

x2



TM Arithmetic: Composition
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Example: x = [− 1
2 ,

1
2 ], x ∈ x :

U1 = 1 + x + 1
2x2 + [−0.035,0.035], x ∈ x ,

U2 = 1− 1
2x2 + [−0.010,0.010], x ∈ x

U1 ◦ U2 ⊆ 1 + (1− 1
2x2 + i2) +

1
2 (1−

1
2x2 + i2)

2 + i1

⊆ 5
2 − x2 + [−0.048,0.056]



TM Arithmetic: Composition
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Observation: For x ∈ x = [− 1
2 ,

1
2 ], we have

ex ∈ U1 = 1 + x + 1
2x2 + [−0.035,0.035],

cos x ∈ U2 = 1− 1
2x2 + [−0.010,0.010],

but
U1 ◦ U2 is not a valid enclosure of ecos x , x ∈ x

For example,

(U1 ◦ U2)(0) = [2.452,2.556] 63 e = ecos 0



TM Arithmetic: Composition
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Analysis: U1 is only a TM for ex , x ∈ i = [− 1
2 ,

1
2 ]. However, in

ecos x , x ∈ i,

we have cos x 6∈ i.

When evaluating U1 ◦ U2

the interval term of U1 must fit 2
(
Rg (U2) ∪ {x0}

)
.

Valid i1 for ex , x ∈ 2
(
Rg (U2) ∪ {0}

)
: [0.106,0.472]

⇒ ecos x ∈ (U1 ◦ U2)(x) ⊆
5
2
− x2 + [0.093,0.493], x ∈ x
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Taylor Model Methods for ODEs



Taylor Model Methods for ODEs
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Taylor expansion of solution w.r.t. time and initial values
→ reduced dependency problem

Computation of Taylor coefficients by Picard iteration:
Parameters describing initial set treated symbolically

Interval remainder bounds by fixed point iteration (Makino, 1998)

Enclosure sets for flow can be non-convex
→ reduced wrapping effect



Example: Quadratic Problem

34 SCAN 2012, Novosibirsk Verified Integration of ODEs with Taylor Models Markus Neher, KIT

KIT

u′ = v , u(0) ∈ [0.95,1.05]

v ′ = u2, v(0) ∈ [−1.05,−0.95]

Taylor model method: initial set described by parameters a and b:

u0(a,b) := 1 + a, a ∈ a := [−0.05,0.05]

v0(a,b) := −1 + b, b ∈ b := [−0.05,0.05]



Naive TM Method of Order 3
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Picard iteration:

u(0)(τ,a,b) = 1 + a, v (0)(τ,a,b) = −1 + b

u(1)(τ,a,b) = u0(a,b) +
∫ τ

0 v (0)(s,a,b) ds

v (1)(τ,a,b) = v0(a,b) +
∫ τ

0

(
u(0)(s,a,b)

)2
ds

u(3)(τ,a,b) = 1 + a− τ + bτ + 1
2 τ2 + aτ2 − 1

3 τ3

v (3)(τ,a,b) = −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 + 2
3 τ3



Naive TM Method: Remainder Bounds
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Remainder bounds by fixed point iteration (Makino, 1998):

For some h > 0, find i0 and j0 s.t.

u0 +
∫ τ

0

(
v (3)(s,a,b) + j0

)
ds ⊆ u(3)(τ,a,b) + i0

v0 +
∫ τ

0

(
u(3)(s,a,b) + i0

)2
ds ⊆ v (3)(τ,a,b) + j0

for all a ∈ a, b ∈ b, τ ∈ [0,h]



3rd order TM Method: Enclosure of the Flow
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h = 0.1, flow for τ ∈ [0,0.1]:

U1(τ,a,b) := 1 + a− τ + bτ + 1
2 τ2 + aτ2 − 1

3 τ3 + i0

V1(τ,a,b) := −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 + 2
3 τ3 + j0

Flow at t1 = 0.1:

U1(a,b) := U1(0.1,a,b) = 0.905 + 1.01a + 0.1b︸ ︷︷ ︸
=:u1(a,b)

+i0

V1(a,b) := V1(0.1,a,b) = −0.909 + 0.19a + 1.01b + 0.1a2b︸ ︷︷ ︸
=:v1(a,b)

+j0

(nonlinear boundary)



Naive TM Method: 2nd Integration Step
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From u1, v1, compute new u(3), v (3) by Picard iteration

Then find i1 and j1 s.t.

U1(a,b) +
∫ τ

0

(
v (3)(s,a,b) + j1

)
ds ⊆ u(3)(τ,a,b) + i1,

V1(a,b) +
∫ τ

0

(
u(3)(s,a,b) + i1

)2
ds ⊆ v (3)(τ,a,b) + j1

for all a, b ∈ [−0.05,0.05] and for all τ ∈ [0,h2]

Since i0 and j0 are contained in U1 and V1, diameters of interval terms
are increasing!



Naive TM Method
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Interval remainder terms accumulate

Linear ODEs:

Naive TM method performs similarly to the direct interval method

→ Shrink wrapping, preconditioned TM methods



Shrink Wrapping
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Idea: Absorb the interval part of the TM into the polynomial part by
increasing the polynomial coefficients

Example:

{
(

1
0

)
+

(
2 0
0 1

)(
a
b

)
+

(
[−1,1]
[−3,3]

)
| a,b ∈ [−1,1]}

= {
(

1
0

)
+

(
3 0
0 4

)(
a
b

)
| a,b ∈ [−1,1]} =

(
[−2,4]
[−8,8]

)



Shrink Wrapping
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General case: Multiply all polynomial coeffs except for the constant part
by suitable shrink factor q (Berz & Makino 2002, 2005)

Example:

U (a,b) := 2 + 4a + 1
2a2 + [−0.2,0.2],

V(a,b) := 1 + 3b + 1ab + [−0.1,0.1],

Usw(a,b) := 2 +
89
20

a +
89
160

a2,

Vsw(a,b) := 1 +
287
80

b +
89
80

ab


a, b ∈ [−1,1],

(q =
89
80

)



Shrink Wrapping
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(
U
V

)
(white) vs.

(
Usw
Vsw

)

Linear ODEs: Shrink wrapping performs similarly to the pep method.



Integration with Preconditioned Taylor Models
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Preconditioned integration: represent flow at tj as

Uj = Ul,j ◦ Ur ,j = (pl,j + i l,j ) ◦ (pr ,j + i r ,j )

Purpose: stabilize integration as in the QR interval method

Theorem (Makino and Berz 2004)
If the initial set of an IVP is given by a preconditioned Taylor model, then
integrating the flow of the ODE only acts on the left Taylor model.



Integration with Preconditioned Taylor Models
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“Proof” of the theorem: If∫
f (x, t) dt = F (x, t) and x = g(u),

then ∫
f
(
g(u), t

)
dt = F

(
g(u), t

)
.

Application: After each integration step, modify Ul,j Ur ,j such that the
initial set Ul,j for the next integration step is well-conditioned.



Preconditioned TMM for linear ODE
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Linear autonomous system (A ∈ Rm×m):

u′ = A u, u(0) ∈ u0 = U0, T =
n

∑
ν=0

(hA)ν

ν!

Initial set: pl,0(x) = c0 + C0x, pr ,0(x) = x, i l,0 = i r ,0 = 0

jth initial set: Uj = (cl,j + Cl,j x + i l,j ) ◦ (cr ,j + Cr ,j x + i r ,j ),

cl,j , cr ,j ∈ Rm, Cl,j , Cr ,j ∈ Rm×m

Integrated flow:

Ũj := (Tcl,j + TCl,j x + i l,j+1) ◦ (cr ,j + Cr ,j x + i r ,j )

=: (cl,j+1 + Cl,j+1 x + [0,0]) ◦ (cr ,j+1 + Cr ,j+1 x + i r ,j+1) =: Uj+1



Preconditioned TMM for linear ODE
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Global error:

i r ,j+1 := C−1
l,j+1TCl,j i r ,j + C−1

l,j+1i l,j+1, j = 0,1, . . .

Cl,j+1 = TCl,j : pep preconditioning

Cl,j+1 = Qj : QR preconditioning



Integration with Preconditioned Taylor Models
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Preconditioned integration: flow at tj :

Uj = Ul,j ◦ Ur ,j = (pl,j + i l,j ) ◦ (pr ,j + i r ,j )

Note that the polynomial part of Ũj is independent of Ur ,j ,

but the interval remainder bound depends on the range of Ur ,j !

Scaling:

Uj = (Ûl,j ◦ Sj ) ◦ (S−1
j ◦ Ûr ,j ) Sj : scaling matrix

such that
Rg
(

S−1
j ◦ Ûr ,j

)
≈ [−1,1]m



Integration of Quadratic Problem
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u′ = v , u(0) ∈ [0.95,1.05]

v ′ = u2, v(0) ∈ [−1.05,−0.95]
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Enhancements
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Taylor expansion with respect to reference trajectory
(defect correction, order k/n in space/time) (Berz & Makino)

Adaptive domain splitting (Berz & Makino)

Taylor models with pep; parametric ODEs (Lin & Stadtherr)

Consistency testing by backward integration (Rauh, Auer & Hofer)

Exponential enclosure techniques (Rauh & Auer)



Applications
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Solar system dynamics, orbits of NEOs (Berz et al.)

Space flight simulation (Armellin & Di Lizia)

Parametric ODEs in chemistry, biology, engineering
(Stadtherr, Lin & Enszer)

Control problems in engineering (Rauh, Auer et al.)



Software
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AWA (Lohner 1987; IA; free)

COSY Infinity, COSY-VI (Berz 1990s, Makino 1998; TMs; restricted)

VNODE/VNODE-LP (Nedialkov 1999/2010; IA; free)

ValEncIA-IVP (Rauh, Auer & Hofer, 2005; IA; upon request)

VSPODE (Lin & Stadtherr, 2006; IA, TMs; upon request)

RiOT (Eble 2006; TMs; free)



Summary / To Do
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+ For nonlinear ODEs, Taylor models benefit from reduced dependency
problem and reduced wrapping effect (non-convex enclosure sets).

− Free general purpose state-of-the-art TM software

Analysis of TM methods for nonlinear ODEs

Dimensionality curse: No. of coeffs of m-variate TMs of order n:

N(m,n) N(4,10) N(4,20) N(6,10) N(6,20) N(20,10)(
m + n

m

)
1,001 10,626 8,008 230,230 30,045,015

Verified implicit methods
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