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Example

Task: Compute an interval enclosure for x = 1/15 based on IEEE
standard double precision.

Representable numbers

Exact result

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
Width: 1.387779× 10−17

Other possible representations:
6.66666666666666657415× 10−2 + [−9.252× 10−19, 9.252× 10−19]
6.66666666666666657415× 10−2 + [0, 9.252× 10−19]

6.66666666666666657415× 10−2 + [9.251× 10−19, 9.252× 10−19]
Width: < 10−30
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Example
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Example

Task: Compute an interval enclosure for x = 1/15 based on IEEE
standard double precision.

[x+elo,x+ehi] interval

[xlo,xhi] interval

Representable numbers

Exact result

Classical interval analysis:
x ∈ [6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2]
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Interval Types

Let Ω be the set of numbers representable in IEEE double precision
format

We consider four kinds of intervals:

1. [xlo , xhi ] such that xlo , xhi ∈ Ω

2. [x − e, x + e] such that x , e ∈ Ω

3. [x − elo , x + ehi ] such that x , elo , ehi ∈ Ω; elo , ehi ≥ 0

4. [x + elo , x + ehi ] such that x , elo , ehi ∈ Ω

Assumptions:

I intervals are narrow

I rounding errors matter

⊕,⊗ are round to nearest, ties to even addition and multiplication

+,+ denote operations rounded up/down
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IEEE Floating Point Format

binary64 number (double precision) stored as:

I 1 bit for sign s

I 11 bit exponent e

I 52 bit mantissa m

It most cases it represents number:

(−1)s × (1 + 2−52m)× 2(e−1023)

 0

→ If mantissa was 4 bits long, then binary numbers 100100.0 and
0.001001 are exactly representable, but the number 100100.001001
is not representable.
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Computing With Midpoint Intervals

Dekker(1971) showed that given a, b ∈ Ω
(a⊕ b)− (a + b) ∈ Ω and (a⊗ b)− (a× b) ∈ Ω
(if there was not overflow or underflow)

i.e., the exact result of the arithmetic operation can be given as an
unevaluated sum of two floating point numbers

Let add(a, b) = (res, err) be a function such that res = a⊕ b
and a + b = res + err

We can then compute [x1 − e1, x1 + e1] + [x2 − e2, x2 + e2]:
1. (x , e3) := add(x1, x2)
2. e := e1+e2+|e3|
3. return [x − e, x + e]
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Addition Theoretical Analysis Summary

Let a, b ∈ R. Given an intervals enclosing a and b, compute
interval enclosing a + b.

Without the loss of generality let a ∈ [1, 2] and |b| ≤ |a|.

Case [alo , ahi ] [a− e, a + e] [a + elo , a + ehi ]

|b| < ε 2ε 2|b|+ O(ε2) O(ε2)
ε ≤ |b| < 1/2 2ε ε+ O(ε2) O(ε2)
1 ≤ |b| and b < 0 0 O(ε2) O(ε2)
1 ≤ |b| and b > 0 2ε < 2ε+ O(ε2) O(ε2)

ε = 2−53
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Addition With Medium Magnitude Difference

Example: (1.3) + (1.4× 10−10)
Exact result mantissa is longer than allowed by the standard
→ rounding occurs

In classical interval analysis the bounds of exact result can lie
anywhere in between of two representable numbers
The expected error introduced is ε for each bound (2ε in total)

exact result

In intervals of the second kind, we compute
(res, err) := add(a, b). The expected magnitude of err is ε/2

The expected error introduced is 2err = ε
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Implementation Pitfalls and Wide Intervals

Special care has to be taken for underflowing multiplication

Dekker algorithm does not work in that case

→ Underflowing results can be enclosed by 0± 10−200

In wide intervals as e, elo and ehi gain magnitude, additional error
is introduced in directed rounding of error

Multiplication of wide intervals [1− 1, 1 + 1]× [1− 1, 1 + 1] yields
suboptimal results ([1− 3, 1 + 3])

→ shift of the interval center is required in intervals of the second
kind
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Computational Experiments

1. Add 10000 numbers with high magnitude difference

2. Add 10000 numbers with moderate magnitude difference

3. Add 10000 numbers with alternating sign

4. Add 10000 numbers with similar magnitude

5. Multiply 10000 numbers

[a, b] [a− e, a + e] [a− elo , a + ehi ]

Test Interval width

1 2.2× 10−12 1.6× 10−27 8.6× 10−40

2 2.2× 10−12 1.1× 10−12 0.0

3 0.0 0.0 0.0

4 2.2× 10−11 1.8× 10−11 0.0

Mul Narrow 1.7× 10−12 1.1× 10−12 8.2× 10−27

Mul Wide 1.3644389579658 1.7683310177080 1.3644389579634
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Arithmetic Operations Count and Timings

[a, b] [a− e, a + e] [a− elo , a + ehi ]

Addition

Add 2 8 10
Time(109 operations) 37s 48s 49s

Multiplication

Add 0 14 29
Mul 8 9 22
Time(109 operations) 57s 63s 114s
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Application to Rigorous Polynomial

Possible storage formats:

1.
∑

i [ai , bi ]x
i

2. (
∑

i aix
i ) + [−e, e]

3. (
∑

i aix
i ) + [elo , ehi ]

In case an operation rounds a polynomial coefficient, the error
introduced depends also on the value of the monomial
If x ∈ [−1, 1] then x i ∈ [−1, 1] → the sign of the error does not
matter

In second and third case we need less memory to store polynomial
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Conclusion

We have compared three kinds of intervals

Intervals of second and third kind provide tighter enclosures for
narrow intervals

Computational experiments confirm the advantage of midpoint
intervals

Thank you for you attention.
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