
Sardana: an Automatic Tool for Numerical
Accuracy Optimization 1

Arnault Ioualalen and Matthieu Martel
University of Perpignan Via Domitia

LIRMM - UMR5506
{arnault.ioualalen, matthieu.martel}@univ-perp.fr

SCAN’12 - 24/09/12
Presentation by Laurent Thévenoux

laurent.thevenoux@univ-perp.fr

1Work realized in the SARDANES project (UPVD, ENS and UBO), granted
by the FNRAE

Arnault Ioualalen and Matthieu MartelUniversity of Perpignan Via Domitia LIRMM - UMR5506 {arnault.ioualalen, matthieu.martel}@univ-perp.frSardana: an Automatic Tool for Numerical Accuracy Optimization 2

Floating-point arithmetics

Supposed to match the arithmetics of the reals
But it introduces a lot of errors from both:

rounding errors of values (ex: 0.1)
rounding errors of calculation (ex: X + a with X � a)

Example

(x − 0.1)× (x − 0.1) 6=F x2 − 0.2x + 0.01

But which one is more precise ? and for what value of x ?

How to implement a "good" formula ?

heuristics for simple cases (ex: sorting terms)
proved algorithms (too specific and costly)

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Improving the accuracy ?

Static analyzers available

ASTRÉE, Fluctuat both rely on abstract interpretation of programs

Fluctuat calculates a safe approximation of the rounding errors
with interval arithmetics by considering ulp of numbers
now with a more precise domain: zonotopes

+ very precise analysis
+ input values are described by intervals
− doesn’t help to correct a program, it only raises alarms

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Improving the accuracy automatically: Sardana

We want an automatic tool to improve the accuracy of programs
1 program size is growing (≈ 100k loc .)
2 floating-point arithmetics is not intuitive
3 we can’t test any inputs of the program

Sardana is compiler for Lustre language (synchronous programming)

synchronous programs runs for hours, days or more
often embedded with critical equipments (ex: planes,
power-plants)
code is written as repeated cycles of instructions

We want to synthesize a new and more accurate program

for all the inputs of the initial program (intervals)
for any duration of execution

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

How to synthesize a more accurate program ?

We need to transform it into a semantically equivalent one
Use numerical transformations producing equivalent formulas

associativity
commutativity

distributivity, factorization
propagation of minus operator

But we can’t look exhaustively for a better equivalent formula

(2n − 3)!! way to calculate a sum of n terms
exponential number of way to evaluate a polynomial function

⇒ We need abstraction to narrow down this research space

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Abstraction of equivalent programs

APEG: Abstract Program Expression Graph
Features:

handle intervals to abstract sets of traces of execution
built from the syntactic tree
constructed by polynomial algorithms
stays polynomial in size of the initial program
represents an exponential number of equivalent programs

APEGs represent an exponential number of expressions with
1 abstraction boxes
2 equivalence classes

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Abstraction boxes

An abstraction box ∗, (p1, . . . , pn) is defined by

a symmetric associative operator ∗ like + or ×
a list of constants, variables, expressions or abstraction boxes

An abstraction box represents by definition all the expressions
constructed with the operator ∗ over p1, . . . , pn ⇒ at least
(2n − 3)!! expressions

(2n − 3)!! 6= ((2n − 3)!)!
(2n − 3)!! = 1× 3× 5× · · · × (2n − 3)

Embedded abstraction box allows to represent more expressions

∗, (p1, . . . , pn, ∗′, (p′
1, . . . , p

′
k)) ⇒ (2n − 3)!!× (2k − 3)!!

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Example of an abstraction box +, (a, b, c, d)

(2n − 3)!! = 1× 3× 5× · · · × (2n − 3)

a b c d
+

+
+

a c b d
+

+
+

a d b c
+

+
+

b a c d
+

+
+

b c a d
+

+
+

b d a d
+

+
+

c a b d
+

+
+

c b a d
+

+
+

c d a b
+

+
+

d a b d
+

+
+

d b a c
+

+
+

d c a b
+

+
+

a b c d

+

+

+

a c b d

+

+

+

a d b c

+

+

+

Figure: Every possible sums of 4 terms ⇒ 15 distinct expressions, distinct
means that the accuracy could be different!

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Equivalence classes

Equivalence classes merge equivalent expressions
equivalent expressions obtained by associativity, commutativity,
distributivity. . .

(a * b) * (c + d) (a * ((c + d) * b)

*

* +

a b c d

+

c d

a

b

*

*

(a * ((c * b) + (c * d))

*

c b

a +

*

*

d b

distributivityassociativity

commutativity

Figure: Example of transformations of expressions

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

The equivalence class concept

An equivalence class is a set of nodes which are the roots of
expressions equivalent one to each other

Combining equivalence classes allow to represent an exponential
number of expressions without exploding in size

×

+ +

a a 2 a 2+

c c 2 c

× ×

×

1 2

4+

b b 2 b

×
3 +

b c

Figure: An APEG representing 10 equivalent expressions

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Abstract Program Expression Graphs definition

We define the APEG set ΠB inductively as the small set such as

Definition
1 a ∈ ΠB where a is a leaf (constant, variable, interval)
2 ∗(p1, p2) ∈ ΠB where ∗ is an operator apply on p1 ∈ ΠB and

p2 ∈ ΠB

3 ∗, (p1, . . . , pn) ∈ ΠB is an abstraction box, pi are APEGs
4 〈p1, . . . , pn〉 ∈ ΠB is an equivalence class of equivalent

expressions

To construct APEGs we use two kind of polynomial algorithms
homogenization algorithms
expansion algorithms

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

APEG construction: homogenization algorithms

Polynomial homogenization algorithms:
distribute multiplications
factorize common factors
propagate subtractions through additions and multiplications

Homogenization algorithms introduce homogeneous parts
Homogeneous part: where a symmetric associative operator
repeated itself

Homogeneous parts are crucial to introduce large abstraction boxes

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

APEG construction: horizontal expansion algorithm

+

+ +

+

+

c da b fe

1

2 We perform one walk
through the APEG
⇒ O(n)

We add at most:
3(n − 1) boxes

we add in equivalence class 1,

+, (a,b,c,d) + (e + f)

((a + b) + (c + d)) + +, (e,f)

+, (a,b,c,d,e,f)

and in equivalence class 2

(a + b) + +, (c,d)

+, (a,b) + (c + d)

+, (a,b,c,d)

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

APEG construction: vertical expansion algorithm

+

+ +

+

+

c da b fe

1

2 We perform one walk
through the APEG
⇒ O(n)

We add at most:
(n − 1) + n boxes

We add in equivalence class 1:

(a+b)+ +,(c,d,e,f)

(c+d)+ +,(a,b,e,f)

(e+f)+ +,(a,b,c,d)

a+ +,(b,c,d,e,f)

b+ +,(a,c,d,e,f)

c+ +,(a,b,d,e,f)

d+ +,(a,b,c,e,f)

e+ +,(a,b,c,d,f)

f + +,(a,b,c,d,e)

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Synthesizing a more accurate program

APEG represent an exponential number of equivalent programs
To evaluate one program we use an over-approximation of the
roundoff errors (using intervals).
ex: real error of a + b ≤ ulp(a + b) + errors on a and b.

We have still to synthesize more accurate programs from
abstraction boxes
equivalence classes

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Synthesizing an accurate formula from an abstraction box

Heuristic is a greedy pairing algorithm

At each step we search for the pair (pi , pj) of terms where the error
of pi ∗ pj is minimal

+,(a,b,c,d,e)

(min)a+b, b+c, c+d
a+c, b+d, c+e
a+d, b+e
a+e

+,(a,c,e,)+,(b,d)

min
a+c, c+e, e+(b+d)
a+e, c+(b+d),
a+(b+d),

+, (e, ,)+,(b,d)+,(a,e)

min
e+(a+e),
e+(b+d),
(a+e)+(b+d)

+,(,)+,(e,)+,(b,d) +,(a,e)

() ()
Figure: Expression synthesis from abstraction box +, (a, b, c , d , e)

Complexity
n − 2 steps of pairing, at most n new pairs to consider each time
⇒ O(n2) complexity

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Synthesizing an accurate formula from an APEG

Heuristic is a limited depth search (depth is set by the user)

We select the way an expression is evaluated by considering only
the best way to evaluate its sub-expressions to a specific depth

+

+ +× ×

a a 2 a b b 2 b

min min

Naive local search (depth=0)
⇒ O(n)

+

+ +× ×

a a 2 a b b 2 b

Local search (depth=1)
⇒ O(n2)

Complexity is exponential
if depth is large enough we synthesize the optimal solution
But then it is in exponential time!

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

The Sardana tool

A static analyzer
written in OCAML
use GMP, MPFR libraries to represent number of any format
works on floating-point number as well as fixed point numbers
needs the range of the input values from the user
takes a Lustre code and returns an optimized Lustre code

A graphical interface (optional)

written in JAVA
allow to represent codes accuracy in a user-friendly way
allow to parametrize more easily the analyzer

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

1

2

code
before optimization

code
after optimization

3
1
2
3

Charts 1, 2, 3 show the evolution along the execution of the:
1: floating point values and errors of an input
2: floating point values and errors of an initial output
3: floating point values and errors of an optimized output

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Case study: optimization of summations

Optimization of summations evaluation
Sums are used in various algorithms
There are many ways to write them → (2n − 3)!!

ill conditioned sums1

1 positive values, large values among little values
2 positive values, large values among little and medium values
3 both signs, large values among little values
4 both signs, large values among little and medium values

These configuration causes
absorption issues
catastrophic cancelations issues

Large value ≈ 1016, medium values ≈ 1, small values ≈ 10−16

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Case study: optimization of summations

Optimization of all possible summations of 7, 8 and 9 terms

≈ 50% accuracy average improvement for any ill conditioned sum

#Terms #Expressions Configuration %Avg Gain

7 10.395

1 36%
2 63%
3 51%
4 47%

8 135.135

1 38%
2 65%
3 54%
4 48%

9 2.027.025

1 40%
2 68%
3 53%
4 48%

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Case study: optimization of Taylor expansions

Taylor expansions of usual functions are widely used in programs
But the evaluation of a polynomial is not accurate near a root

We optimized exhaustively all the evaluation schemes, near a root,
for several order or expansion of the Taylor expansion of a function

Function Order #Expressions %Avg Gain

cos(x)
4 62 12%
6 15.924 17%

sin(x)
5 412 22%
7 235.270 28%

ln(x + 2)
3 43 14%
4 2.128 17%
5 323.810 23%

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Perspectives

Conclusion
APEGs allow to represent efficiently many equivalent
expressions
Sardana manipulates whole programs not only expressions
Sardana presents some convincing results

APEG improvements
new expansion algorithms to add more abstraction boxes
new synthesis algorithms to improve the accuracy of programs

More experimental results

On real case examples (complex avionic code written in Lustre)
With fixed-point arithmetics

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

Questions ?

Thank you for you attention !

arnault.ioualalen@univ-perp.fr

Arnault Ioualalen and Matthieu Martel SARDANA (presented by Laurent Thévenoux)

