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Outline of our presentation

1 Affine Arithmetic (AA)

2 Consider to reduce the number of εs

3 Consider to ‘intervalize’ some unimportant εs

4 How to select ‘unimportant’ εs?

5 ‘Penalty Function’ based on Hausdorff distance

6 Numerical Examples
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Affine Arithmetic (AA)

Affine arithmetic (AA) is an extension of interval arithmetic.

In AA, quantities are represented by affine forms:

a0 + a1ε1 + a2ε2 + · · ·+ anεn

where εi are dummy variables which satisfy −1 ≤ εi ≤ 1 .

In AA, number of ε gradually increases and that makes calculation
slower.
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εs represent correlation between different quantities

x = 1 +0.5ε1
y = 1 +0.5ε2

x = 1 +0.5ε1
y = 1 +0.4ε1 +0.1ε2

x
O

y

1

1

x
O

y

1

1

Same interval, different joint range.
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Minkowski sum

We can recognize the range as the Minkowski sum of center point and line
segments.

x = 1 +0.5ε1
y = 1 +0.4ε1 +0.1ε2

y

x
O 1

1

x
O 1

1

yy

x
O 1

1

x
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y

1

1 = + +

return
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Convert between interval

interval → affine







[x1, x1]
[x2, x2]

...
[xn, xn]








=⇒









x1+x1
2 +

x1−x1
2 ε1

x2+x2
2 +

x2−x2
2 ε2

...
xn+xn

2 +
xn−xn

2 εn









affine → interval

x = a0 + a1ε1 + · · ·+ anεn

⇓

[a0 − δ, a0 + δ] , (δ =
n∑

i=1

|ai |)
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Linear Operation is easy

x = x0 + x1ε1 + · · ·+ xnεn

y = y0 + y1ε1 + · · ·+ ynεn

Addition, Subtraction

x ± y = (x0 ± y0) + (x1 ± y1)ε1 + · · ·+ (xn ± yn)εn

x ± α = (x0 ± α) + x1ε1 + · · ·+ xnεn .

Constant Multiplication

αx = (αx0) + (αx1)ε1 + · · ·+ (αxn)εn .
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Nonlinear Unary Operations (Standard Functions)

f : Nonlinear Unary Operation such as exp, log, · · · .
Consider to calculate z = f (x) for affine variable

x = x0 + x1ε1 + · · ·+ xnεn

1 Calculate interval I (range of x) as

I = [x0 − δ, x0 + δ], δ =
n∑

i=1

|xi | ,

2 Obtain ax + b (a linear approximation of f on I ) and maximum error

δ = max
x∈I

|f (x)− (ax + b)|

3 Obtain the result z as

a(x0 + x1ε1 + · · ·+ xnεn) + b + δεn+1
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linear approximation ax + b and error δ

f (x)

ax + b

δ

δ

I
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Nonlinear Binary Operations

Consider linear approximation ax + by + c for binary operator g(x , y).
(almost same as the case of unary operations)

Multiplication

z = y0x + x0y − x0y0 + δxδyεn+1

= x0y0 +
n∑

i=1

(y0xi + x0yi )εi

+(
n∑

i=1

|xi |)(
n∑

i=1

|yi |)εn+1
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Example for comparison of inclusion tightness: Henon map

Henon Map: a discrete-time dynamical system:

(
xi+1

yi+1

)

=

(
1− ax2i + yi

bxi

)

It is known that Henon map is chaotic at b = 0.3, a ≥ 1.06.

We use parameter b = 0.3, a = 1.05 (near chaotic).
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Calculating Henon map by interval and affine(1)

horizontal axis: number of iteration

vertival axis: max(width(x),width(y))

initial value: (x(0), y(0)) = ([−10−5, 10−5], [−10−5, 10−5]) return
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Calculating Henon map by interval and affine(2)

horizontal axis: number of iteration

vertival axis: max(width(x),width(y))

initial value: (x(0), y(0)) = ([0, 0], [0, 0])
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Calculating Henon map by interval and affine(3)

calculation time (msec) maximum number of εs

interval 0.016 0

affine (no additional ε) 0.111 2

affine 0.601 202

CPU: core i7 2640M (2.8GHz)

OS: ubuntu 10.04 LTS (64bit)

software: GNU C++, boost.interval, boost.ublas
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Problem

Affine arithmetic has very high ability to get tight inclusion.

We must introduce new dummy variable εn+1 for each nonlinear
operation.

Number of εs gradually increases and that makes calculation slower.

How can we reduce the number of εs without loss of tight inclusion?
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Policy of Epsilon-Reduction(1)

Consider p affine variables which have q dummy εs:

a10 + a11ε1 + · · ·+ a1qεq
...

ap0 + ap1ε1 + · · ·+ apqεq

we can reduce the number of ε by ‘intervalize’ several εs. Let S be a index
set of εs which we want to erase, we can erase εs by substituting as
follows:

∑

i∈S

a1iεi → (
∑

i∈S

|a1i |)εq+1

...
∑

i∈S

apiεi → (
∑

i∈S

|api |)εq+p

Here, p new εs are added in order to represent the newly generated
intervals.

M. Kashiwagi (Waseda Univ.) An algorithm to reduce the number of dummy variables in affine arithmeticSCAN’ 2012 Nobosibirsk 16 / 29



Policy of Epsilon-Reduction(2)

In the following, we consider to reduce number of εs to r .
Overestimation should be as small as possible .
We keep r − p εs which have big ‘intervalize penalty’,
and intervalize q − (r − p) εs which have small ‘intervalize penalty’.
Then we can reduce the total number of εs to (r − p) + p = r :

r−p
︷ ︸︸ ︷
∑

i 6∈S

a1iεi +

q−(r−p)
︷ ︸︸ ︷

(
∑

i∈S

|a1i |)εq+1

...
∑

i 6∈S

apiεi + (
∑

i∈S

|api |)εq+p

What is intervalize penalty?
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Example of Epsilon Reduction

We have

x = 1 +ε1 −ε2 +0.1ε3 −0.3ε4 +0.1ε6 +0.5ε7
y = 1 +0.2ε1 +ε2 +0.05ε3 −0.3ε4 +0.5ε5 +0.03ε6 −0.2ε7

and let index set S = {3, 5, 6, 7} then we can erase ε3, ε5, ε6, ε7 as

(
x

y

)

=

(
1 + 1ε1 − ε2 − 0.3ε4 + (|0.1|+ |0|+ |0.1|+ |0.5|)ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + (|0.05|+ |0.5|+ |0.03|+ |0.2|)ε9

)

=

(
1 + 1ε1 − ε2 − 0.3ε4 + 0.7ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + 0.78ε9

)

7 εs → keep 3 εs and intervalize 4 εs → 5 εs.
Which ε should be intervalized / kept to minimize overestimation?
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(
1 + 1ε1 − ε2 − 0.3ε4 + (|0.1|+ |0|+ |0.1|+ |0.5|)ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + (|0.05|+ |0.5|+ |0.03|+ |0.2|)ε9

)

=

(
1 + 1ε1 − ε2 − 0.3ε4 + 0.7ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + 0.78ε9

)

7 εs → keep 3 εs and intervalize 4 εs → 5 εs.
Which ε should be intervalized / kept to minimize overestimation?
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Intervalize Penalty?

If we intervalize some ε then the line segment made by the ε is covered by
the hyper-rectangular. Minkowski

We can regard the Hausdorff distance between the line segment and
hyper-rectangular as the intervalize penalty of the ε.
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Penalty Function

Let vectors v0, · · · , vq ∈ R
p be vi = (ai1, · · · , aip)

T

a10 + a11ε1 + · · ·+ a1qεq
...

ap0 + ap1ε1 + · · ·+ apqεq

⇓

v0 + v1ε1 + · · ·+ vqεq

Penalty Function

For vector v = (a1, · · · , ap)
T we define penalty function P as follows:

When a1 = a2 = · · · = ap = 0, we define P(v) = 0

Otherwise, let as , at be the first and second values in the order of
absolute values |ai |. That is, |as | ≥ |at | ≥ |ai | (i 6= s, t) hold. Then

we define P(v) =
|as | · |at |

|as |+ |at |
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Penalty function and Hausdorff distance

Let v = (a1, · · · , ap)
T ∈ R

p and norm of Rp be maximum norm. Let
L ⊂ R

p be a line segment defined by

(a1, · · · , ap)
T ε (−1 ≤ ε ≤ 1)

and let B ⊂ R
p be a hyper-rectangular defined by

(a1ε1, · · · , apεp)
T (−1 ≤ εi ≤ 1)

Then Hausdorff distance between L and B becomes

H(L,B) = 2P(v)

Hausdorff distance

H(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)}
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Example of Penalty Function(1)

P







2
−0.5
−3
1







2, 0.5, 3, 1 (absolute value)

3 ≥ 2 ≥ 1 ≥ 0.5 (sort)

P







2
−0.5
−3
1







=
3× 2

3 + 2
= 6/5 = 1.2
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Example of Penalty Function(2)

x = 1 +ε1 −ε2 +0.1ε3 −0.3ε4 +0.1ε6 +0.5ε7
y = 1 +0.2ε1 +ε2 +0.05ε3 −0.3ε4 +0.5ε5 +0.03ε6 −0.2ε7

P(v1) =
1× 0.2

1 + 0.2
= 1/6 = 0.1666 · · ·

P(v2) =
1× 1

1 + 1
= 1/2 = 0.5

P(v3) =
0.1× 0.05

0.1 + 0.05
= 1/30 = 0.0333 · · ·

P(v4) =
0.3× 0.3

0.3 + 0.3
= 3/20 = 0.15

P(v5) =
0× 0.5

0 + 0.5
= 0

P(v6) =
0.1× 0.03

0.1 + 0.03
= 3/130 = 0.0230 · · ·

P(v7) =
0.5× 0.2

0.5 + 0.2
= 1/7 = 0.142 · · ·
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Simple Example

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

(original: number of εs = 7)

x = 1 +ε1 −ε2 +0.1ε3 −0.3ε4 +0.1ε6 +0.5ε7
y = 1 +0.2ε1 +ε2 +0.05ε3 −0.3ε4 +0.5ε5 +0.03ε6 −0.2ε7
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Simple Example
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-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

(number of εs is reduced to 5)

(
x

y

)

=

(
1 + 1ε1 − ε2 − 0.3ε4 + (|0.1|+ |0|+ |0.1|+ |0.5|)ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + (|0.05|+ |0.5|+ |0.03|+ |0.2|)ε9

)

=

(
1 + 1ε1 − ε2 − 0.3ε4 + 0.7ε8

1 + 0.2ε1 + ε2 − 0.3ε4 + 0.78ε9

)
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Simple Example

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

(number of εs is reduced to 4)

(
x

y

)

=

(
1 + 1ε1 − ε2 + ε8

1 + 0.2ε1 + ε2 + 1.08ε9

)
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Simple Example

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

(number of εs is reduced to 3)

(
x

y

)

=

(
1− ε2 + 2ε8

1 + ε2 + 1.28ε9

)
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Simple Example

-2

-1

 0

 1
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-2 -1  0  1  2  3  4
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-1
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-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4
-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

(number of εs is reduced to 2)

(
x

y

)

=

(
1 + 3ε8

1 + 2.28ε9

)
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Calculating Henon map with epsilon reduction(1)

initial value: (x(0), y(0)) = ([−10−5, 10−5], [−10−5, 10−5]) Henon

‘maxeps = n-m’ means that if number of ε ≥ m then reduce the
number of ε to n.

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 0  500  1000  1500  2000

interval
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Calculating Henon map with epsilon reduction(1)

initial value: (x(0), y(0)) = ([−10−5, 10−5], [−10−5, 10−5]) Henon
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Calculating Henon map with epsilon reduction(2)

initial value: (x(0), y(0)) = ([0, 0], [0, 0])

‘maxeps = n-m’ means that if number of ε ≥ m then reduce the
number of ε to n.
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Calculating Henon map with epsilon reduction(3)

calculation time (msec) maximum number of εs

interval 0.15 0

affine 35.77 2002

maxeps=5-15 2.1 15

maxeps=10-20 2.81 20

maxeps=20-30 3.71 30

maxeps=40-50 4.9 50

CPU: core i7 2640M (2.8GHz)

OS: ubuntu 10.04 LTS (64bit)

software: GNU C++, boost.interval, boost.ublas
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Conclusion

We propose an algorithm to reduce the number of epsilons in affine
arithmetic.

The algorithm is simple and easy to use.

The algorithm speeds up affine arithmetic.

The algorithm do not lose the tight inclusion property of affine
arithmetic.

Future Work

Numerical experiments for higher dimensional case.

Apply to verified IVP solver, especially to very long time integration.

Thank you for your attention!
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Appendix - In the case of Euclidean norm

For vector v = (a1, · · · , ap)
T we can give penalty function P for Euclidean norm

as follows:
Let S = {1, 2, . . . , p} be an index set, 2S be a set of all subsets of S , then
penalty function is give by

P(v) =

√
√
√
√
√
√
√
√
√

max
S′∈2S

(
∑

i∈S′

a2i

)(
∑

i∈S−S′

a2i

)

∑

i∈S

a2i

.

To maximize this, we should separate a21, a
2
2, . . . , a

2
p into two groups which

maximize

(
∑

i∈S′

a2i

)(
∑

i∈S−S′

a2i

)

. Namely we should separate into two groups

such that the difference of sum of each group becomes as equal as possible. This
problem is known as the Number Partitioning Problem, which is NP-complete.

So, we consider the maximum norm version of penalty function is suitable for our

algorithm.
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