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• Walter Krämer (Wuppertal, Germany)

• Vladik Kreinovich (El Paso, USA)

• Ulrich Kulisch (Karlsruhe, Germany)

• Wolfram Luther (Duisburg, Germany)

• Svetoslav Markov (Sofia, Bulgaria)

• Günter Mayer (Rostok, Germany)

• Jean-Michel Muller (Lyon, France)

• Mitsuhiro Nakao (Fukuoka, Japan)

• Michael Plum (Karlsruhe, Germany)

• Nathalie Revol (Lyon, France)
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Preface

This volume contains peer refereed abstracts of the 15th GAMM-IMACS
International Symposium on Scientific Computing, Computer Arithmetic and
Verified Numerical Computations, Novosibirsk, September 23–29, 2012.

This conference continues the series of international SCAN symposia initi-
ated by University of Karlsruhe, Germany, and held under the joint auspices of
GAMM and IMACS. SCAN symposia have been held in many cities across the
world:

Karlsruhe, Germany (1988)
Basel, Switzerland (1989)
Albena-Varna, Bulgaria (1990)
Oldenburg, Germany (1991)
Vienna, Austria (1993)
Wuppertal, Germany (1995)
Lyon, France (1997)
Budapest, Hungary (1998)
Karlsruhe, Germany (2000)
Paris, France (2002)
Fukuoka, Japan (2004)
Duisburg, Germany (2006)
El Paso, Texas, USA (2008)
Lyon, France (2010)

SCAN’2012 strives to advance the frontiers in verified numerical computations,
interval methods, as well as their application to computational engineering and
science. Topics of interest include, but are not limited to:
• theory, algorithms, and arithmetics for verified numerical computations
• hardware and software support, programming tools for verification
• symbolic and algebraic methods for numerical verification
• verification in operations research, optimization, and simulation
• verified solution of ordinary differential equations
• computer-assisted proofs and verification for partial differential equations
• interval analysis and its applications
• supercomputing and reliability
• industrial and scientific applications of verified numerical computations

We want to thank all contributors and participants of symposium SCAN’2012.
Without their active participation, we would not have succeeded.

Local Organizers



Contents

Todor Angelov
Solvability of systems of interval linear equations via the codifferential
descent method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ekaterina Auer and Stefan Kiel
Uses of verified methods for solving non-smooth initial value problems . 15

Fayruza Badrtdinova
Interval of uncertainty in the solution of inverse problems of chemical
kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Mamurjon Bazarov, Laziz Otakulov, Kadir Aslonov
Software package for investigation of dynamic properties of control sys-
tems under interval uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Burova Irina
On constructing nonpolynomial spline formulas . . . . . . . . . . . . . . . . . . . . . . . . 21
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Solvability of systems

of interval linear equations

via the codifferential descent method

Todor Angelov

Saint-Petersburg State University
35, Universitetskii prospekt

198504 Saint-Petersburg, Russia
angelov.t@gmail.com

Keywords: linear interval equations, solvability, nonsmooth analysis,
codifferential calculus

A system of linear interval equations

Ax = b (1)

is considered in the works [1-3]. Here A = (aij) is an interval m × n-matrix,
and b = (bi) is an interval m-vector.

We need the following definitions: a = [a,a] = { x ∈ R | a ≤ x ≤ a},
mida = 1

2 (a + a), rada = 1
2 (a − a), and 〈a〉 = max{0, a, −a}.

By the (weak) solution set to a system of linear interval equations (1), we
mean the set

Ξ(A, b) = {x ∈ R
n |Ax = b for some A ∈ A, b ∈ b} ,

constructed of all possible solutions of the systems Ax = b with A ∈ A and
b ∈ b [2,3].

Statement [1]. The expression

Uni(x,A, b) = min
1≤i≤m




radbi −
〈

mid bi −
n∑

j=1

aijxj

〉




defines the functional Uni : Rn → R, such that the membership of a vector
x ∈ R

n in the solution set Ξ(A, b) of the system of linear interval equations
Ax = b is equivalent to nonnegativity of the functional Uni in x,

x ∈ Ξ(A, b) ⇐⇒ Uni(x,A, b) ≥ 0.
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Consider a locally Lipschitz function f defined on an open set X ⊂ Rn.
Definition [4]. A function f : X → R is called codifferentiable at a point

x ∈ X if there exist compact convex sets df(x) ⊂ Rn+1 and df(x) ⊂ Rn+1 such
that the following expansion holds

f(x+ ∆) = f(x) + max
[a,v]∈df(x)

{a+ (v,∆)} + min
[b,w]∈df(x)

{b+ (w,∆)} + o(x,∆),

where
o(x,∆)

‖∆‖ −→ 0 as ‖∆‖ → 0, a, b ∈ R, v, w ∈ R
n.

The pair Df(x) = [df(x), df(x)] is called the codifferential of f at x. A
function f is called continuously codifferentiable at a point x ∈ X if it is cod-
ifferentiable in a neighborhood of x and if there exists a codifferential mapping
Df which is Hausdorff continuous at the point x.

It turns out that most known nonsmooth functions, as well as the func-
tional Uni, are continuously codifferentiable. The codifferential mapping has
the property to identify sets of points of nondifferentiability. Note that Uni is
multi-extremal, and its graph is constructed of a finite number of hyperplanes.
In general, the local minima points of −Uni lie on intersections of these hy-
perplanes, which appear to be sets of nondifferentiability of −Uni. This allows
the codifferential descent method [4] to reach the local minima points of −Uni
in one or a small amount of iterations. Also, the proposed method has the
property to “jump out” of local minima points and descent further.

In comparison, Shary in his paper [1] proposes a solution to the optimization
of Uni, based on the fact that Uni is concave in every orthant of Rn. Therefore,
the localizations of Uni can be studied by means of tools of convex analysis.

References:

[1] S.P. Shary, Solvability of interval linear equations and data analysis
under uncertainty, Automation and Remote Control, 73 (2012), No. 2,
pp. 310–322.

[2] S.P. Shary, Finite-dimensional Interval Analysis, Novosibirsk, 2011. Elec-
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Many system types from the area of engineering require mathematical mod-
els involving non-differentiable or discontinuous functions [1]. The non-smooth-
ness can be obvious, such as that in commonly used models for friction or
contact. There are also more obscure cases occurring, for example, in computer-
based simulations where if-then-else or similar conditions are used on model
variables. The task of finding reliable solutions becomes especially difficult if
non-smooth functions appear on the right side of an initial value problem (IVP).
On the one hand, such system models are often sensitive to round-off errors.
On the other hand, their parameters might be uncertain due to impreciseness
in measurements or lack of knowledge. Therefore, interval methods represent a
straightforward choice for verified analysis of such systems. They guarantee the
correctness of results obtained on a computer and can represent purely epistemic
bounded uncertainty in a natural way.

However, the application of the existing interval methods to real-life sce-
narios is challenging since they might provide overly conservative enclosures of
exact solutions. Even in the case of simple jump discontinuities, where the
solution is not differentiable in just several switching points, the accuracy is
poor and, consequently, the resulting enclosures might be too wide [4]. This is
probably the reason for the relatively little attention the non-smooth problems
have got in the last decades whereas verified solution of smooth IVPs has been
extensively explored. For example, there exists no publicly available verified
implementation of a non-smooth IVP solver at the moment to our knowledge.
Nonetheless, meaningful outcomes can still be obtained as is demonstrated in
this talk for several examples.

In our contribution, we identify important types of non-smooth application
along with their corresponding solution definitions first. Second, we provide an
overview of the existing techniques for verified enclosure of exact solutions to
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non-smooth IVPs [2,3,4] and assign a suitable solution method to each of the
application types mentioned above. After that, we focus our considerations on a
special case in which the switching points are known a priori in a certain sense.
For this situation, we describe a simple method to solve non-smooth IVPs using
basically the same techniques as in the smooth case. Finally, we demonstrate
the applicability of the method using several examples.
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The inverse problem of chemical kinetics is a problem of identifying reactions
and the rate constants, as well as the other kinetic parameters associated with
these reactions. Solving this problem is often obstructed with ambiguity upon
the estimation of specific kinetic parameters. Such an ambiguity reflects the
nature of a kinetic model that describes only some features of chemical reactions
in a certain area of the reaction. In the inverse problem of chemical kinetics,
being a problem of identifying reaction factors, it is necessary to evaluate the
uncertainty limits for the kinetic parameter estimates. For this purpose, we
suggest using a method that is based on the Kantorovich idea [1], when only
knowledge of maximal experimental errors is used. Each measured value is
considered to be an interval [k] that is a set of all possible values k bounded by
inequalities k− ≤ k ≤ k+ [2]. Under this assumption, each kinetic parameter
can be estimated by a region, whose every point is a result of a numerical
simulation of the reaction. Considering all these regions together we obtain a
multidimensional area that consists of the points that represent a valid set of
the kinetic parameters.

The parameters of chemical kinetics k are found from the differential equa-
tions by solving the inverse problem. Depending on the type of the experiment,
the system of differential equations of chemical kinetics has different forms:

1) non-steady state experiment dx/dt = f1(x, y, k), dy/dt = f2(x, y, k),
2) quasi-steady state experiment dx/dt = f1(x, y, k), f2(x, y, k) = 0,
3) equilibrium f1(x; y; k) = 0, f2(x; y; k) = 0,

where x is the vector of the measurable compounds; y is the vector of the
compounds that cannot be measured.

There are but a few methods for determining uncertainty ranges. For ex-
ample, the direct search method, which is the simplest but the slowest. Its
drawback is that the function to be minimized has to be calculated many times.
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In this study, we consider a method based on L.V. Kantorovich’s idea. The fol-
lowing problem is set: for each constant, the uncertainty range (more exactly,
its boundaries) has to be found. To find the range for the constant kj , we need
to determine min kj and max kj under the condition that the restrictions

|xexp − xcalc| ≤ ε (1)

are satisfied.
During the search, the direct kinetic problem is solved with a certain set

of constants, simultaneously checking that the concentrations found satisfy the
inequality (1). If the concentration values computed satisfy the inequality, then
the given set of constants belongs to the desired uncertainty range. To find a
boundary of the desired region dj , a certain set of constants has to be taken,
all constants being fixed except one, for example kj . The set of constants is
determined from a solution of the inverse problem.

The following algorithm for finding the uncertainty range by constant kj is
considered.

Some value of the constant that satisfies (1) is considered as the initial
approximation. Such a value can be found by minimization of a criterion that
takes into account the discrepancy between calculations and measurements. Let
us assume that an initial point (k01 , ..., k

0
m) is found and an initial step h0 is

chosen. To find the desired range for the j-th constant, we determine max kj
(the algorithm for finding min kj is the same, but the step must be taken with
a ‘minus’ sign. By adding the h0 step to k0j , we obtain the following set of

constants: (k01 , ..., k
0
j + h0, ..., k

0
m). Now we solve the direct problem with the

available set of constants and check the consistency of inequality (1). If the
inequality is satisfied, the point k0j + h0 belongs to the desired range, and we
continue to move to the right if we are searching for max kj . If inequality (9) is
not satisfied at the point k0j + h0, we decrease the step twofold, h1 = h0

2 , and

add it to k0j to obtain a new set of constants (k01 , ..., k
0
j + h1, ..., k

0
m). We solve

the direct problem with the resulting set of constants and check the consistency
of inequality (1). The process is repeated until the step with the required
accuracy is obtained. In such a way, the boundaries of the uncertainty range
are determined. A similar search procedure is used for the other rate constants.
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Algorithmization of methods of interval analysis encounters essential diffi-
culties caused by the fact that the existing computer hardware and software
do not completely match specific requirements of interval computations. We
mean specific computer interval arithmetic with directed rounding, evaluation
of interval functions and some analytical transformations of the expressions.

Experts engaged in design of automatic control systems deal with mathemat-
ical models in the form of differential equations systems and/or block diagrams
with transfer functions. They usually involve one or more parameters of the
object and its regulator. Such mathematical models are known to be called
as “parametric”. In the program system INTAN-1 (INTerval ANalysis –1) de-
veloped by our team, automatic control systems under interval uncertainty of
parameters can be analyzed providing that, on entry, data and constraints are
considered precisely known, while the values of parameters of the automatic
control systems have interval uncertainty.

The program system INTAN-1 consists, basically, of three main parts that
are responsible for

• identification of the control objects with interval parameters,

• the analysis of automatic control systems under interval uncertainty,

• computing (interval) parameters of the regulator.
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All the other blocks of the system are either auxiliary or utility programs. The
structure of INTAN-1 can be represented in a vivid way through a block dia-
gram.

At the start of the program system run, the block “Head program” carries
out editing of the input data and checking their correctness. If an error in the
input record is detected, then a corresponding diagnostic message in outputted.
In case of success, further performance is launched, that is, forming input and
target data, processing the current stage and analyzing the result. Then the
name of the next program unit is determined, it is loaded into the memory, the
system directs the control to it, and informs the user about the details of the
program execution.

The block “Program toolkit” consists of the solvers that perform the main
work during the solution of the problem. The short description of these blocks
is given below.

The block “Auxiliary programs” includes the computational procedures for
testing regularity of interval matrices, testing positive definiteness of interval
matrices, etc. These are necessary for the analysis of automatic control systems
under interval uncertainty.

The block “Algebraic equations solvers” includes Matlab R© implementa-
tions of interval Gauss-Seidel method, subdifferential Newton method as well as
some other popular techniques for the solution of various problems that arise in
connection with linear and nonlinear algebraic equations.

The basic operations used in the analysis of automatic control systems under
interval uncertainty are implemented in the block “Analysis of interval auto-
matic control systems”.

The end-user, during the work with our program system, forms the initial
information on the problem under solution. Then the system analyzes the in-
formation, constructs an interval model of the problem that supplements the
input information, carries out analytical transformations (if necessary), per-
forms interval expansions of the expressions, computes interval extensions of
the functions, and, finally, produces a solution to the problem.
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Let m, l, s, n, p be integer nonnegative numbers, l ≥ 1, s ≥ 1, p ≤ s + l −
2, m = s + l, {xk} be a mesh of ordered nodes, a = x0 < . . . < xk−1 <
xk < xk+1 . . . < xn = b, and the function u ∈ Cm[a, b]. We suppose that
ϕj , j = 1, . . . ,m, is a Chebyshev system on [a, b], in which case the functions
ϕj ∈ Cm[a, b], j = 1, . . . ,m, are strictly monotone and nonzero within [a, b].
The basic functions ωj(x), for which supp ωj = [xj−s, xj+l], j = 1, . . . ,m, are
assumed to be valid, can be defined from the system of equations

j+s∑

k=j−l+1

ωk(x)ϕi(xk) =

m∑

k=1

cikϕk(x), i = 1, 2 . . . ,m,

where cik = 0 if i 6= k and ckk = 1. Next, we use ωj(x) in the Lagrange
interpolation problem or in the least squares problem. If we take cik 6= 0, then it
is possible to construct nonpolynomial basic splines with required characteristics
(e.g., smoothness).

For example, let us discuss how to construct trigonometrical basic splines of
the minimal defect (ωj ∈ C1[a, b]) with three mesh intervals in support.

Let supp ωj = [xj−1, xj+2]. If x ∈ [xj , xj+1], then we find ωj(x) from the
following system:










ωj−1(x) + ωj(x) + ωj+1(x) = 1,

sin(xj−1)ωj−1(x) + sin(xj)ωj(x) + sin(xj+1)ωj+1(x) = c10 sin(x) + c01 cos(x),

cos(xj−1)ωj−1(x) + cos(xj)ωj(x) + cos(xj+1)ωj+1(x) = c02 sin(x) + c20 cos(x).

If [xj−1, xj ], then we find ωj(x) from the system











ωj−2(x) + ωj−1(x) + ωj(x) = 1,

sin(xj−2)ωj−2(x) + sin(xj−1)ωj−1(x) + sin(xj)ωj(x) = c10 sin(x) + c01 cos(x),

cos(xj−2)ωj−2(x) + cos(xj−1)ωj−1(x) + cos(xj)ωj(x) = c02 sin(x) + c20 cos(x),
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and if [xj+1, xj+2), then we find ωj(x) from the system










ωj(x) + ωj+1(x) + ωj+2(x) = 1,

sin(xj)ωj(x) + sin(xj+1)ωj+1(x) + sin(xj+2)ωj+2(x) = c10 sin(x) + c01 cos(x),

cos(xj)ωj(x) + cos(xj+1)ωj+1(x) + cos(xj+2)ωj+2(x) = c02 sin(x) + c20 cos(x).

We find the values of the parameters c01, c10, c02, c20 from ωj ∈ C1(R1), thus
obtaining c02 = −c01 = cos(h/2) sin(h/2), c10 = c20 = cos2(h/2), h = (b− a)/n.
Then, on [xj , xj+1], we have ωj−1(x) = (cos(x− jh− h)− 1)/(2(cos(h)− 1)),

ωj(x) =
cos(h)− cos(x − jh− h/2) cos(h/2)

cos(h)− 1
, ωj+1(x) =

cos(x− jh)− 1

2(cos(h)− 1)
.

Hence,

ωj(x) =





cos(x−jh+h)−1
2(cos(h)−1) , x ∈ [xj−1, xj),

cos(h)−cos(x−jh−h/2) cos(h/2)
cos(h)−1 , x ∈ [xj , xj+1),

cos(x−jh−2h)−1
2(cos(h)−1) , x ∈ [xj+1, xj+2].

If {ϕj} are {1, sin(kx), cos(kx)}, k = 1, 2 (ωj ∈ C2) or k = 1, 2, 3 (ωj ∈ C3),
then the problem is more complex, but, nevertheless, it can be easily solved
using Maple

TM

[1, 2].
Suppose that we are interested in the value of a physical quantity ũ(x) that

is difficult or impossible to measure directly. To find the value of ũ(x), several
other quantities u(x0)+K1(h)u′(x0), . . . , u(xn)+K1(h)u′(xn), K1(h) = tg(h/2)
are measured, and then we reconstruct the value of ũ(x) ≈ u(x):

ũ(x) =
∑

k=j−1,j,j+1

(u(xk) +K1(h)u′(xk))ωk(x), x ∈ [xj , xj+1].

We take the values Xk = [xk − dk, xk + dk], X = [xl, xp], x ∈ X , Uk =
[uk − tk, uk + tk], U ′

k = [u′k − sk, u′k + sk], dk > 0, tk > 0, sk > 0 and estimate
ũ(X) using interval computations ([3]).
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Consider the linear regression model y = Xβ+ε, where y denotes the vector
of (observations of) output data, β denotes the vector of regression parameters,
X denotes the matrix of (observations of) input data, which is assumed to have
full column rank, and ε denotes the vector of disturbances. Assume that y, the
vector of observations of the output variable, ranges over an interval vector y.
Using well-known ordinary least squares (OLS) estimator, we define the OLS
set as {(X ′X)−1X ′y : y ∈ y}. The OLS set consists of all OLS-estimates
of regression parameters of the regression model as the vector of observations
ranges over y.

For a user of the regression model it is essential to have a suitable description
of the OLS set.

The OLS set is a zonotope in the parameter space. We present a method
for construction of vertex description of the OLS set, inequality description of
the OLS set and computation of volume of the OLS set. The method, called
“Reduction-and-Reconstruction-Recursion”, is a uniform approach to the three
problems. While it runs in exponential time in the general case (which is not
surprising as the computation of volume of a zonotope is a #P -hard problem∗),
in a fixed dimension (= number of regression parameters) it is a polynomial-
time method. We further discuss complexity-theoretic properties of the method

∗Unlike the class NP of the decision problems, the problem class #P contains the function
or precisely counting problems associated with problems in NP .
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in the general case and compare it with other known methods for enumeration
of facets, enumeration of vertices and computation of volume of a zonotope.

In general, the OLS set is a polytope, which is complex from the com-
binatorial point of view (i.e., with respect to the number of facets and ver-
tices). Hence it makes sense to seek for reasonably simple approximations.
Using interval arithmetic, construction of the interval enclosure is trivial. We
show a method for finding an ellipsoidal approximation of the Löwner-John
type. We present an adaptation of Goffin’s Algorithm (a version of the shallow-
cut ellipsoid method) for construction of an ellipsoidal enclosure. In partic-
ular, given ǫ > 0 fixed, in polynomial time we construct an ellipse E(E, s)
such that E(d−2 · E, s) ⊆ OLS ⊆ E((1 + ǫ)E, s), where E(E, s) is the ellipse
{x : (x − s)′E−1(x − s) ≤ 1} with E is positive definite, OLS is the OLS set
and d is dimension (number of regression parameters).
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Control-command and signal filtering algorithms are two main components
of embedded software. These algorithms are usually described by linear time-
invariant (LTI) systems which have good properties and are well understood
mathematically. In automotive domain, in order to increase performance of the
implementation of such algorithms, e.g., to reduce execution time or memory
consumption, the use of fixed-point arithmetic is almost unavoidable. Nev-
ertheless at the design level, these algorithms are studied and defined using
floating-point arithmetic. As the two arithmetics have very different behaviors,
we need tools to transform with strong guaranties floating-point programs into
numerically equivalent programs using fixed-point arithmetic. This conversion
requires two steps. The range estimation deals with the integer part of the tar-
geted fixed point representation while the accuracy estimation allows to define
the fractional part. In this work we are considering range estimation methods.

The range estimation of LTI systems is an important research field in which
two kinds of methods exist. The static methods based on interval [5] or affine
[6] arithmetics and the dynamic methods based on statistical tools. This work
is focused on the second kind of methods. In both cases, the first step in the
fixed-point conversion is the computation of the dynamic range of each variable
in the program which is a mandatory information to determine the fixed-point
format. A few statistical models exist for this task, e.g., the previous work
[1,3,4]. In particular, the Generalized Extreme Value (GEV) Distribution [2],
used in [4] and in a restricted form in [3], seems very promising as it can be
used to infer minimal and maximal values of each variable in function of a user
parameter. It defines the probability that these values may be exceeded during
the execution of the program.
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The use of the GEV distribution shows good results in practice, especially
for LTI systems. In this approach, several simulations of the studied systems
are performed using random input. For each simulation the maximum is kept.
Because dealing with minimum is similar, we focus our study on the maxima.
They appear to belong to a GEV distribution. However, in this model, it is
not taken into account that each simulation is producing a time series. In this
work we show that data produced by LTI systems can be modelized trough an
autoregressive model (AR). This property can be used in order to show that the
distribution of inner variables maxima of LTI systems is a GEV distribution.
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IRCCyN – 1, rue de la Noë, BP 92 101, 44321 Nantes Cedex 3, France
alexandre.chapoutot@ensta-paristech.fr

thibault.hilaire@lip6.fr

philippe.chevrel@mines-nantes.fr

Keywords: linear filters, interval arithmetic, sensitivity analysis

Introduction. This article deals with the resilient implementation of parame-
trized linear filters (or controllers), i.e. with realizations that are robust with
respect to their fixed-point implementation.
The implementation of a linear filter/controller in an embedded device is a dif-
ficult task due to numerical deteriorations in performances and characteristics.
These degradations come from the quantization of the embedded coefficients
and the roundoff occurring during the computations.

As mentioned in [1], there are an infinity of equivalent possible algorithms to
implement a given transfer function h. To cite a few of them, one can use direct
forms, state-space realizations, ρ-realizations, etc. Although they do not require
the same amount of computation, all these realizations are equivalent in infinite
precision, but they are no more in finite precision. The optimal realization
problem is then to find, for a given filter, the most resilient realization.

We here consider an extended problem with filters those coefficients depend
on a set θ of parameters that are not exactly known during the design. They
are used for example in automotive control, where a very late fine tuning is
required.

Linear parametrized filters. Following [3], we denote Z(θ) the matrix con-
taining all the coefficients used by the realization, hZ(θ) the associated transfer

function and θ† the quantized version of θ. Z†(θ†) is then the set of the
quantized coefficients, i.e. the quantization of coefficients Z(θ†) computed
from the quantized parameters θ†. The corresponding transfer function is de-
noted hZ†(θ†).
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Performance Degradation Analysis. The two main objectives of this ar-
ticle are to evaluate the impact of the quantization of θ and Z(θ) on the filter
performance and to estimate the parameters θ that give the worst transfer func-
tion error in the set of possible parameters Θ.

For that purpose, there are mainly two kinds of tools to study the degrada-
tion of filter performance due to the quantization effect: i) use a sensitivity mea-
sure (with respect to the coefficients) based on a first order approximation and
a statistical quantification error model; ii) use interval tool, based on transfer
function with interval coefficients. In both cases, we seek the maximal distance
between the exact transfer function hZ(θ) and the quantized one hZ†(θ†). For

that purpose, we can use the L2-norm i.e., ‖ g ‖2,
√

1
2π

∫ 2π

0
| g(ejω) |2 dω or the

Maximum norm i.e., ‖ g ‖∞, maxω∈[0,2π] | g(e
jω) |.

The measure of the degradation of the finite precision implementation is then
given by ‖ hZ(θ) − hZ†(θ†) ‖⋄, with ⋄ ∈ {2,∞}. So the worst-case parameters

θ0 can be found by solving:

argmax
θ∈Θ

‖ hZ(θ) − h
Z

†(θ†) ‖⋄ . (2)

Since Θ is an interval vector, we denote [h] the interval transfer function.
With an interval approach, we can define the following constrained global opti-
mization problem:

Maximize ‖ [h]†
Z†(θ†)

− [h]Z(θ) ‖⋄ subject to θ ∈ Θ . (3)

Note that in both cases, the evaluation of the norms can be done in interval
with ω ∈ [0, 2π].

We will present the solutions of this problem using interval optimization
methods [2] and we will compare them with the statistical sensitivity approach.
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Interval Newton method (cf. [1,2,3]) is a practical tool for enclosing a unique
simple zero x∗ ∈ [x] of a smooth function f ∈ C1[x] in an interval domain [x]
such that the width of the enclosure [x∗] satisfies a given error tolerance. In this
case, the interval Newton method has a quadratic convergence.

In case of existing more zeros or a multiple zero in the given domain [x],
interval Newton method can be extended to enclose all the zeros according to a
requested resolution (cf. [2,3]). The extension is based on the extended interval
division, namely, the division by an interval that contains 0. The extended
interval Newton method (XIN) has a linear convergence and its performance
depends on the chosen definition for the underlying interval division, cf. [4].
An effective algorithm for XIN that is based on the precise quotient set [5] is
suggested in [4]. It has superior effectiveness when the midpoint of [x] happens
to be a zero of f and f is not too flat in a neighborhood of the midpoint mid([x]).
If f(mid([x])) = 0 and f is flat in a neighborhood of mid([x]) then the algorithm
in [4] could be superior in efficiency. In the other cases, it is comparable to the
algorithms for XIN that are based on the supersets of the precise quotient set.

One problem of the zero-finding by XIN is that there could be a cluster of
redundant intervals produced for a multiple zero, where those intervals could
be adjacent or nearby disjoint, which depends on the chosen algorithm for XIN,
cf. [4]. For a pure zero-finding task, the situation of redundancy could be de-
tected by extra inspection or attention. However, if the information of the
zeros is to be used for further automatic computation, the redundant intervals
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can lead to unsatisfactory numerical results. To overcome this problem, extra
attention to the properties of the function f should be paid.

This work uses the algorithm in [4] to find all the zeros of Peano mono-
splines. By Peano monosplines, we mean the Peano kernels regarding the
quadrature rules that are constructed for proper (Riemann-)integrals. They
generally possess more than one multiple zero in their domains; moreover, their
zeros are generally required for deriving reliable bounds of Peano error constants.
In this work, the properties of Peano monosplines as well as the computational
techniques that are useful for the performance of XIN are discussed. Numeri-
cal results are then given for Peano monosplines regarding different quadrature
rules to demonstrate the improvements in the computational convergence of
XIN.
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Approximate computation of the definite integral I(f) =
∫
B f(~x) d~x over an

n-dimensional interval B ∈ IRn, n ∈ N, is an essential task in different fields of
science and engineering. Traditional approaches for the numerical integration
I(f) ≈ S(f) =

∑N
i=1 wif(~xi) generally use the null rules for error estimation,

i.e. E(f) := I(f) − S(f) ≈ Ŝ(f) − S(f), where S(·) and Ŝ(·) are integration
rules with deg Ŝ > degS and deg S := max{n ∈ N |S(xn) = I(xn)}. Different
from the traditional approaches, verified integrators enclose the discretization
error E(f) reliably; more precisely, I(f) ∈ [I(f)] = [S(f)] + [E(f)]. Due to this
difference, the numerical integrators that are based on interval arithmetic can be
superior in efficiency to the conventional approaches, especially when oscillating
integrands are considered, cf. [1,2]. Moreover, verified integrators also can be
relatively effective when conventional integrators encounter difficulties, cf. [1,2].

In the literature, there are different verified approaches discussed for the
numerical integration I(f) ≈ I(p) or I(f) ≈ S(f), where p is an interpolation
polynomial of f . The approximation I(f) ≈ I(p) is considered for example by
the Taylor model method in [3], where p is a Taylor polynomial of f . Those ver-
ified approaches differ in the approximation rules, the ways of error estimation,
and/or the adaptive strategies. All their efforts mainly focus on reducing the
width of error enclosures. The methods of error estimation that are considered
in verified integrators include the derivative free method for analytic functions
(cf. [1,4,5]), the Taylor model method by one or more higher (partial) deriva-
tives of a fixed order (cf. [3]), the classical error bounds of the highest orders
(cf. [6]), and the adaptive error estimation by the Peano-Sard kernel method
(cf. [2,7,8]). The importance of the Peano-Sard kernel method is that it supplies
multiple error estimates for each integration rule of a higher degree, which can
be realized by interval arithmetic for sufficiently smooth integrands.
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It is known that the classical error bounds of the highest orders, depending
on the functional behavior of the integrands, are not always practical for error
estimation, cf. [7,8,9]. This work gives numerical comparison of some verified
approaches for approximate integration that do error estimation by the Taylor
model method in [3], the derivative free method in [4] and the Peano-Sard kernel
method in [2,8].
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Many important practical problems involve different uncertainty types. In
this paper, we consider Numerical Probabilistic Analysis (NPA) for problems
under so-called epistemic uncertainty that characterizes a lack of knowledge
about a considered value. Generally, epistemic uncertainty may be inadequate
to “frequency interpretation”, typical for classical probability and for uncer-
tainty description in traditional probability theory. Instead, epistemic uncer-
tainty can be specified by a “degree of belief”. Alternative terms to denote
epistemic uncertainty are “state of knowledge uncertainty”, “subjective uncer-
tainty”, “irreducible uncertainty”. Sometimes, processing epistemic uncertainty
may require the use of special methods [1].

In our work, we develop a technique that uses Numerical Probabilistic Anal-
ysis for decision making under epistemic uncertainty of probabilistic nature.
One more application of Numerical Probabilistic Analysis is to solve various
problems with stochastic data uncertainty.

The basis of NPA is numerical operations on probability density functions
of the random values. These are operations “+”, “−”, “·”, “/”, “↑”, “max”,
“min”, as well as binary relations “≤”, “≥” and some others. The numerical
operations of the histogram arithmetic constitute the major component of NPA.
It is worthwile to note that the idea of numerical histogram arithmetic has been
first implemented in the work [2].

Notice that the density function can be a discrete function, a histogram
(piecewise constant function), and a piecewise-polynomial function.

Next, we consider the concepts of natural, probabilistic and histogram ex-
tensions of function. We outline the numerical algorithms for constructing such
extension for some classes of function [3].
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Using the arithmetic of probability density functions and probabilistic ex-
tensions, we can construct numerical methods that enable us solving systems of
linear and nonlinear algebraic equations with stochastic parameter [4].

To facilitate more detailed description of the epistemic uncertainty, we in-
troduce the concept of second order histograms, which are defined as piecewise
histogram functions [5]. The second order histograms can be constructed using
experience and intuition of experts.

Relying on specific practical examples, we show that the use of the second
order histograms may prove very helpful in decision making. In particular, we
consider risk assessment of investment projects, where histograms of factors such
as Net Present Value (NPV) and Internal Rate of Return (IRR) are computed.
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The work examines the problem of model predictive control for an uncertain
system containing both interval and stochastic uncertainties. We consider a
linear dynamic system described by the following equation:

x(k+ 1) =

(
A0(k) +

n∑

j=1

Aj(k)wj(k)

)
x(k) +

(
B0(k) +

n∑

j=1

Bj(k)wj(k)

)
u(k),

k = 0, 1, 2, . . . . (1)

Here, x(k) ∈ Rnx is the state of the system at time k (x(0) are assumed to be
available); u(k) ∈ R

nu is the control input at time k; wj(k), j = 1, . . . , n, are
independent white noises with zero mean and unit variance; Aj(k) ∈ Rnx×nx ,
Bj(k) ∈ Rnx×nu , j = 0, . . . , n, are the state-space matrices of the system.

The elements of the state-space matrices are known not exactly, and we have
only the intervals of their possible values:

Aj(k) ∈ Aj , Bj(k) ∈ Bj , j = 0, . . . , n, k ≥ 0, (2)

where Aj ∈ IR
nx×nx ,Bj ∈ IR

nx×nu , j = 0, . . . , n; IR is the set of the real
intervals x = [x, x], x ≤ x, x, x ∈ R.

Model predictive control [1] involves the on-line solution of an optimization
problem to determine, at each time instant, a fixed number of optimal future
control inputs. Although more than one control move is calculated only the
first one is implemented. At the next sampling time, the state of the system is
measured, and the optimization is repeated.
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Allowing for two uncertainty types (interval and stochastic) present in the
system (1), we consider the following performance objective:

min

u(k+i|k), i=0,...,m−1,

max J(k),

Aj(k+i)∈Aj , Bj(k+i)∈Bj ,

j=0,...,n, i≥0,

where

J(k) = E

{ ∞∑

i=0

(
x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k)

) ∣∣∣∣ x(k)

}
.

E {·|·} denotes the conditional expectation; Q ∈ Rnx×nx , Q = QT ≥ 0,
R ∈ R

nu×nu , R = RT > 0, are given symmetric weighting matrices; u(k + i|k)
is the predictive control at time k + i computed at time k, and u(k|k) is the
control move implemented at time k; x(k + i|k) is the state of the system at
time k + i derived at time k by applying the sequence of predictive controls
u(k|k), u(k + 1|k), . . . , u(k + i− 1|k) on the system (1), and x(k|k) is the state
of the system measured at time k; m is the number of control moves to be
computed, u(k + i|k) = 0 for all i ≥; A > 0 (A ≥ 0) means that A is a positive
definite (semi-definite) matrix.

We compute the optimal control according to the linear state-feedback law:

u(k + i|k) = F (k)x(k + i|k), i ≥ 0, (3)

where F (k) ∈ Rnu×nx is the state-feedback matrix at time k.
We solve the above problem by using linear matrix inequalities [2], as this

has been done in [1]. At each time instant k, we solve an eigenvalue problem in
order to calculate the state-feedback matrix F (k) in the control law (3) which
minimizes the upper bound on J(k). As a result, we get the optimal robust
control strategy providing the system with stability in the mean-square sense.
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The dynamics of high-temperature solid oxide fuel cell (SOFC) systems can
be mainly described by their thermal, fluidic, and electro-chemical behavior. In
modeling for control purposes, it is essential to focus especially on the thermal
subsystem which represents the most dominant system part. The admissibility
of control strategies for SOFCs is usually characterized by limitations on the
maximum fuel cell temperature and on the spatial and temporal variation rates
of the internal stack temperature distribution. These constraints are introduced
to minimize mechanical strain due to different thermal expansion coefficients of
the stack materials and to reduce degradation phenomena of the cell materials.

Control-oriented models for the thermal behavior of SOFC systems are given
by ordinary differential equations (ODEs). They can be derived from the first
law of thermodynamics for nonstationary processes and represent integral bal-
ances of the inflow and outflow of energy, which determine the internal energy.
In addition, the internal energy can be directly linked to the temperature of the
stack module. The preceding fundamental modeling procedure can be modi-
fied to account for the spatial temperature distribution in the interior of a stack
module by means of a finite volume semi-discretization. The corresponding non-
linear system models describe, firstly, the transient behavior during the heating
phase, secondly, the influence of variable electrical loads during usual system
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operation, and, finally, the transient cooling process during the shutdown phase
of the system.

The parameter intervals and non-verified parameter estimates that have been
identified by the procedures presented in [2] provide the basis for the design of
robust controllers. To obtain such a controller, we use an extension of classical
sliding mode control making use of a suitable Lyapunov function to stabilize
the system dynamics despite possible bounded uncertainty in the system pa-
rameterization and a-priori unknown disturbances. A first simulation study
was published in [1].

In this contribution, we extend our considerations in such a way that the en-
thalpy flow of the cathode gas into the stack module is defined as a control input
for the thermal behavior. This enthalpy flow can be influenced by manipulating
the air mass flow as well as the temperature difference between the supplied air
in the preheating unit and the inlet elements of the fuel cell stack module. If
the above-mentioned sliding mode control procedure is employed to determine
the enthalpy flow, further physical restrictions have to be accounted for. These
restrictions result from the admissible operating ranges of both the valve for
the air mass flow and the temperature of the preheating unit. Moreover, the
variation rate of the temperature difference between the preheating unit and
the stack module’s inlet elements has to be restricted to prevent damages due
to thermal stress. These feasibility constraints are taken into account using an
appropriate cost function which is evaluated along with the design criteria for
the guaranteed stabilizing interval-based sliding mode controller.

Employing the results for the interval-based verified parameter identifica-
tion, we present both numerical simulations and experimental results, the latter
validating the control procedures for the SOFC test rig which is available at the
Chair of Mechatronics at the University of Rostock.
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A necessity to solve computational problems in case of incomplete and un-
certain input data has been one of the main reasons for emerging the interval
analysis. Nowadays, interval methods are well-developed for the data described
by real intervals. However, some practical problems bring to life models with
the similar type of uncertainty (bounded within some intervals), with the data
being complex. Good examples are meso-mechanic algorithms in physics [1],
estimation of dynamic functions (like heat transfer function in [2]), and so on.
Consequently, the computation methods for complex-valued models is a major
issue.

In this work, we are trying to generalize Gauss-Seidel iteration method from
real intervals to complex intervals and show their possible limitations.

Our basic interval object is a set of circular complex intervals 〈c, r〉 = { x ∈
C : |x− c| ≤ r }. There are no “standard definition” for a complex interval,
and different tasks require different basic objects. Basic system is the system of
linear equations Ax = b, where A is an interval n × n-matrix, b is an interval
vector.

We work with one kind of solutions sets, i.e. the so-called united solutions
set:

Ξuni(A, b) = { x ∈ C
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)},

Statement. Classic Gauss-Seidel iteration method can be generalized for the
complex case with minimal problems. (This require replacement of real interval
operations by complex ones, and replacing the exact intersection of circular
intervals by hull of them only).

Theorem 1. Complex analogues of Gauss-Seidel iterations method still func-
tion, i.e. do not deteriorate outer estimation of solutions set at any step and
still produce outer estimate of solution set as a result.
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The efficiency of interval Gauss-Seidel iterations in the real case is limited
by Neumaier theorem [3], which states that the method works only with the
so-called interval H-matrices. The complex case also has limitations, which we
formulate below.

In the sequel, an interval n×n-matrix will be called circular trace dominant
matrix (CTD-matrix), if, for any n-dimensional non-zero interval vector u with
mid u = 0, the condition

∣∣∣∣
∑

i6=j

aijuj

∣∣∣∣ < |aiiui|

is true for every i.

Theorem 2. If, in the system of equations Ax = 0, the matrix A is not an
CTD-matrix, then there exists a starting interval x of any width that cannot
be improved by Gauss-Seidel iterations.

Definition. We call the interval n× n-matrix A strongly different from CTD-
matrices, with difference coefficient τ , if a vector U , mid U = 0, exists for which
|∑i6=j aijU j | > τ |aiiU i|.
Statement. If, in the system Ax = b, the matrix A is strongly different
from CTD-matrix, and the difference coefficient is large enough, there exists a
starting interval approximation of any width that are “improvement-resistant”
for Gauss-Seidel iterations.

The main difference with the real case, however, is the following theorem,
that substantially narrows the applicability of the Gauss-Seidel iterations in case
of complex intervals:

Theorem 3. The class of CTD-matrices is empty.
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In classical interval analysis [3], a real value x is in a digital computer rep-
resented by an interval x ∈ [xlo, xhi] where xlo and xhi are two floating point
numbers. There are further possible representations of the value of x using two
or three floating point numbers:

• x ∈ [xmid − e, xmid + e] using two floating point numbers xmid and e,

• x ∈ [xmid + elo, xmid + ehi] using three floating point numbers xmid,
elo and ehi.

To motivate our work, let us consider an example where x = 1/15. Using
the classical interval format, the tightest possible interval that contains x using
standard double precision floating point format [2] is

[6.66666666666666657415× 10−2, 6.66666666666666796193× 10−2].

The width of this interval is approximately 1.387779×10−17. Using the alterna-
tive representation with xmid

.
= 6.66666666666666657415×10−2, we can obtain

e = ehi
.
= 9.252 × 10−19; elo = 0. With either one of the alternative represen-

tations, we achieve an order of magnitude tighter enclosure of the actual value
of x. Moreover, if we allow midpoint to lie outside the interval, we can set elo
close to ehi to get an interval width less than 10−30 using just three floating
point numbers.

∗This work was supported by Czech Science Foundation grant 201/09/H057, Ministry
of Education, Youth and Sports project number OC10048 and long-term financing of the
Institute of Computer Science (RVO 67985807). The author would like to thank Stefan
Ratschan for a valuable discussion and helpful advice.
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For midpoint intervals, the optimal error can be estimated based on the work
of Dekker [1]. Intervals of the form [xmid − e, xmid + e] with such optimal error
estimation were used in [5] but no theoretical comparison with classical interval
analysis was given. On the other hand, theoretical comparison in [4] is based on
suboptimal error estimation. In our work we compare midpoint and endpoint
intervals using the optimal error estimation. Moreover, we introduce intervals
of the form [xmid +elo, xmid +ehi] and we show that, in case of narrow intervals,
both alternative forms provide tighter enclosures compared to the classical in-
terval form. We also compare all interval representations using computational
benchmarks.
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Pod Vodárenskou věž́ı 2

182 07 Prague 8, Czech Republic
dzetkulic@cs.cas.cz

Keywords: initial value problem, rigorous integration, Chebyshev basis

When rigorously computing with a real continuously differentiable function,
a Taylor polynomial is commonly used to replace the actual function. The
Taylor polynomial remainder is bounded to create a conservative enclosure of
the function. One of the applications of such a rigorous function enclosure lies in
verified algorithms for integration of nonlinear ordinary differential equations [4].

In this paper, we present a multivariable function enclosure using the Cheby-
shev polynomial instead of the Taylor polynomial. Since the Chebyshev series
converge faster for all analytic functions compared to the Taylor series, our
function enclosures approximate real analytic functions with tighter remainder
intervals.

In the existing works on Chebyshev polynomials [1,2], only operations with
functions in one variable are described. In [1], the function approximation is
stored in the form of function values in the Chebyshev nodes. The authors use
non-rigorous methods to compute coefficients of Chebyshev polynomials, and
no enclosure of the exact function value is guaranteed. On the other hand,
the authors in [2] use rigorous methods, but only addition, multiplication and
composition of one variable functions are presented.

We present an efficient algorithm for rigorous addition, substraction, mul-
tiplication, division, composition, integration and derivative of multi-variable
Chebyshev function enclosures. Our publicly available implementation [3] sup-
ports function enclosures based on both Taylor and Chebyshev polynomials
and allows their comparison. Computational experiments with the initial value

∗This work was supported by Czech Science Foundation grant 201/09/H057, Ministry
of Education, Youth and Sports project number OC10048 and long-term financing of the
Institute of Computer Science (RVO 67985807). The author would like to thank Stefan
Ratschan for a valuable discussion and helpful advice.
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problem of ordinary differential equations show that the approach is competitive
with the best publicly available verified solvers.
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The IEEE 754-2008 standard recommends correctly rounding elementary
functions. However, these functions are transcendental and their results can
only be approximated with error ǫ > 0. If ◦p is a rounding function at precision
p, there may exist some arguments x, called (p, ǫ) hard-to-round arguments, such
that ◦p(f(x) − ǫ) 6= ◦p(f(x) + ǫ), inducing an uncertainty on the rounding of
f(x). Finding an error ε such that there are no (p, ε) hard-to-round arguments
is known as the Table Maker’s Dilemma (TMD).

There exist two major algorithms to solve the TMD for elementary func-
tions which are Lefvre’s and SLZ algorithms [2, 3]. The most computationally
intensive step of these algorithms is the (p, ǫ) hard-to-round argument search
since its complexity is exponential in the size of the targeted format. It takes
for example several years of computation to get all of them for the classic ex-
ponential function in double precision and the same holds for all other classical
elementary functions. Hence, getting (p, ǫ) hard-to-round arguments is a chal-
lenging problem. In order to obtain these (p, ǫ) hard-to-round arguments for
larger formats (extended precision, quadruple precision), the implemented al-
gorithms should be able to efficiently operate on petaflops systems. In the long
term, we would expect to require the correct rounding of some functions in the
next versions of the IEEE 754 standard, which will allow to completely specify
all the components of numerical software.

High-performance computing systems increasingly rely on many-core chips
such as Graphical Processing Units (GPU), which present a partial SIMD exe-
cution (Single Instruction Multiple Data). However, when the control flows of
the threads on a SIMD unit diverge, the execution paths are serialized. Hence,
in order to efficiently use GPU, one has thus to avoid divergence, i.e. manage
to have regular control flow within each group of threads executed on the same
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SIMD unit.

This work is a first step for solving the TMD on many-core architectures.
We focused on Lefèvre’s algorithm [2] as it is efficient for double precision.
Also, it is embarrassingly parallel and fine-grained which makes it suitable for
GPU. We first deployed this algorithm on GPU using the most efficient (to
our knowledge) implementation techniques [5]. Then we redesigned it using
the concept of continued fractions. This made it possible to obtain a better
understanding of Lefèvre’s algorithm and a new algorithm which is much more
regular. More precisely, we strongly reduce two major sources of divergence
of Lefèvre’s algorithm: loop divergence and branch divergence. Compared to
the reference implementation of Lefèvre’s algorithm on a single high-end CPU
core, the deployment of Lefèvre’s algorithm on an NVIDIA Fermi GPU offers a
speedup of 15x whereas the new algorithm enables a speedup of 52x.
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The point inclusion test is a classical problem of computational geometry.
The problem statement is: given a two-dimensional domain bounded by a piece-
wise smooth Jordan curve, determine whether a certain point belongs to it.
The boundary curve is comprised of a sequence of smooth curvilinear edges. It
should be noted that the classical problem definition considers only a polygonal
boundary described by sequence of its vertex points.

An excellent survey of the classical point-in-polygon methods is given in
[1]. In the conclusion it advises to “avoid the angle summation test like the
plague” due to its high constant factor in the time complexity. The most notable
other methods are the ray intersection test and the test based on barycentric
coordinates. The robustness of these methods is studied in [2]. The barycentric
coordinate test is shown to be unstable when the point lies on a diagonal of
the polygon. The ray intersection test potentially can fail when the ray passes
through a vertex, although this instability can be completely eliminated for the
classical problem definition.

The geometric data in computer aided design is often imprecise. The bound-
ary is represented by individual edges and the incident vertices of any two con-
secutive edges may differ up to the tolerance value. This gap between incident
vertices renders the ray intersection and barycentric coordinate tests unstable.
However, the angle summation method continues to be backwards stable.

The purpose of this work is twofold: first, analyze the stability of the angle
summation algorithm; and second, introduce a preprocessing optimization for
the many-points-and-one-domain scenario.
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The numerical behavior of the angle summation algorithm is analyzed. To
calculate the angle between vectors, the FPATAN x87 instruction (atan2) is
used for maximum accuracy. Line segments and circular arcs are considered
as the edges. It is proven that the answer of the point inclusion query must
be correct given that the point is far enough from the boundary. The answer
remains correct even if the edges are perturbed slightly, potentially introducing
gaps between incident vertices.

With some preprocessing, the subsequent angle summation queries can be
accelerated significantly as follows. An axis-aligned bounding box is calculated
for each edge, and a bounding volume hierarchy (BVH) is constructed from
all of them. Angle summation queries are processed by traversing the BVH
recursively. The winding angle is calculated instantly for a BVH node if the
point lies outside of the corresponding box.

Given that all the boxes are tight, the algorithm works in O(K log n
K +KT )

time, where T is the amount of time required to calculate the winding angle
for a single edge, and 2πK is the “absolute winding angle” of the boundary
(assuming K ≤ n). The absolute winding angle is a sum of unsigned winding
angles for all the infinitesimal pieces of the boundary. It is supposed that often
K ≪ n in practice. For instance, for any convex domain K = 1, which means
that queries takes optimal O(log n + T ) time. Some upper bounds for K are
given.
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The report is devoted to subinterval analysis as a new direction, branch of in-
terval analysis. Subinterval analysis or subinterval weights analysis was founded
in [1]. It deals usually with weights as whole characteristics of subintervals.

1. Subinterval arithmetic

Suppose a finite quantity or function w(xk) is defined on an interval XTotal

and is known within the accuracy of adjacent subintervals {Xs} : s = 1, 2, ..., S
: 1 < S < ∞, Xs < Xs + 1, of XTotal ≡ X1..S. At that, many characteristics,
such as moments (mean, dispersion, etc.) of w(xk) are the interval ones.

Let us define the weight of Xs as

whtXs ≡ ws ≡
∑

xk∈Xs, xk 6∈X
s+1

w(xk)

Subinterval arithmetic calculate and rigorously evaluate characteristics of
quantities, intervals and subintervals, e.g., by the ”Ring of formulas” for widths
widMTotal of interval MTotal of mean of w(xk)

widMTotal =

S∑

s=1

widXs ws = widX1..S −
S∑

s=1

widXs

∑

n=1,...S|n6=s

wn =

= widXTotal −
S∑

s=1

ws

∑

n=1,...S|n6=s

widXn

2. Subinterval analysis of inexact information
2.1. Decision making

If the width and weight of any subinterval cannot be less than nonzero values,
then nonzero ruptures exist between the interval MTotal of mean value and the
bounds of XTotal (see [1]). These ruptures explain basic utility paradoxes.
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2.2. Global optimization

An analog of Lipschitz’s condition may be defined for weights of elementary
subintervals and subboxes XElem,s, XElem,t : XElem,s ∩XElem,t 6= ∅

|whtXElem,s − whtXElem,t| ≤ ∆wht ≡ ∆w

allowing discontinuity of the function and revealing new relations.

3. Subinterval analysis of exact but incomplete information
3.1. Theorem of interval character of incomplete knowledge

If a finite nonnegative quantity is exactly known everywhere except two
points, the distance between them is nonzero and the values of the quantity in
them may vary not less than over a nonzero interval, then any moment of the
quantity is known within the accuracy not better than a nonzero interval.

This theorem extends essentially the realm of interval analysis applications.

4. Subinterval approximation of exact information
through time, space, ...

4.1. Large databases

A ternary subinterval one-dimentional picture, image needs only 2 numbers
as the coordinates of two intersections of 3 subintervals. The picture of N -
dimensional plot of 1000N bytes needs only 2N bytes.

5. Applications: Accounting. Macroeconomics. Economics.
Population analysis. Recognition. Internet.

Accounting is a natural application of time subintervals as months, quarters
for gain, profit, etc. Audit incomplete knowledge can be processed by subinterval
analysis. Macroeconomics is a natural application of space subintervals as town,
sity, province, state, etc. Populations subintervals as sex, age, profession, wage,
etc. may be used. Subinterval images and pictures may be used for preliminary
analysis and recognition and greatly accelerate them in large databases. Internet
is a prospective field for subinterval analysis also.
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Theorem. If a finite nonnegative quantity is defined on a finite segment
and is exactly known everywhere except two points, the distance between these
points is nonzero and the values of the quantity in these points may vary not
less than over a nonzero interval, then any moment of the quantity, including
the mean and the dispersion of the quantity, is known within the accuracy not
better than another nonzero interval.

The proof is quite simple (see [1]), but the theorem enlarges the interval
analysis to the fields of exact but incomplete knowledge, of planning and control
of durable measurements, researches, business, work and other processes, etc.

Analysis example 1. At equal widths widXs = widX1 of subintervals
Xs, of a total interval XTotal ≡ X1..S we obtain from Novoselov formula (see
[1]), for the width widMTotal of the interval MTotal of the total mean value

widMTotal =

S∑

s=1

widXs ws = widX1 =
widX1..S

S
≡ widXTotal

S

To prove rigorously this simple but, strictly speaking, not obvious conclusion
we do not need any information about weights of subintervals or of interval.

Analysis example 2. Assume the width widXFirst = 2 and the weight
wFirst = 0.7 of only a single or first subinterval XFirst = [2, 4] of a total interval
XTotal = [A,B] = [0, 10] are known (see Fig. 1). Then from Ring of formulas
(see [1]) for the interval MTotal of the total mean value

wFirstwidXFirst ≤ widMTotal
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widMTotal ≤ widXTotal − wFirst(widXTotal − widXFirst)

MTotal ≥ XTotal + wid (XFirst −XTotal) wFirst = 0 + 2× 0.7 = 1.4

MTotal ≤ XTotal − wid (XTotal −XFirst) wFirst = 10− 6× 0.7 = 5.8

2× 0.7 = 1.4 ≤ widMTotal ≤ 10− 0.7× 8 = 4.4

 A w First=0,7  B

 0    1  2 X First   4    5    6    7    8    9 10

2-0= 2 10-4= 6

  2*0,7= 1,4 6*0,7= 4,2

 0+1,4= 1,4 10-4,2= 5,8

   1,4 M Total  5,8

Figure 1: An illustrative example of calculations of the interval MTotal

of mean value with the help of the only (or the first) measurement.

Note, although we use the incomplete information, all evaluations of the
both examples are rigorous and exact as usually in the interval analysis.
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A regular paving [1,2] is a finite succession of bisections that partition a root
box x in R

d into sub-boxes using a tree-based data structure. Such trees are also
known as plane binary trees [3] or finite rooted binary trees [4]. Here we extend
regular pavings to mapped regular pavings which allow us to map sub-boxes in
a regular paving of x to elements in some set Y. Arithmetic operations defined
on Y can be extended point-wise in x and carried out in a computationally
efficient manner using Y-mapped regular pavings of x. The efficiency is due
to recursive algorithms on the finite rooted binary trees that are closed under
union operations. We provide a novel memory-efficient arithmetic over mapped
partitions based on regular pavings and develop an inclusion algebra based on
intervals in a complete lattice Y over a dense class of such partitions of x based
on finite rooted binary trees.

Some application of mapped regular pavings include (i) computationally effi-
cient representations of radar-observed flight co-trajectories over a busy airport
that is endowed with arithmetic for pattern-recognition [5], (ii) averaging of
histograms in multi-dimensional nonparametric density estimation, (iii) arith-
metic over a class of simple functions that are dense for continuous real-valued
functions, (iv) arithmetic over an inclusion algebra of interval-valued functions
to enclose locally Lipschitz real-valued functions, (v) obtaining the marginal
density by integrating along any subset of its coordinates, (vi) obtaining the
conditional function by fixing the values in the domain on a subset of coordi-
nates and (vii) producing the domain with the highest coverage region.

More generally, the mapped regular pavings allow any arithmetic defined
over elements in a general set Y to be extended to Y-mapped regular pavings.
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The properties of such approximations and arithmetic operations are theorized,
implemented and demonstrated with examples.
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Our goal is to develop methods based on interval arithmetic which provide
guaranteed error bounds for solutions of the continuous-time algebraic Riccati
equation (CARE)

R(X) = ATX +XA−XSX +Q = 0, (1)
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where A,S and Q are given matrices in Rn×n and X ∈ Rn×n is the unknown
solution.

The severe disadvantage of the standard Krawczyk operator for the particu-
lar equation (1) is that its computation needs a total cost of O(n6). An interval
Newton algorithm has been used in [2] for enclosing a symmetric solution to
the CARE (1) with a similar cost of O(n6). The following theorem is the main
theoretical basis for our modified Krawczyk operator that is more efficient to
implement.

Theorem 1 [1]. Assume that f : D ⊂ CN → CN is continuous in D. Let
x̌ ∈ D and z ∈ IC

n be such that x̌+ z ⊆ D. Moreover, assume that P ⊂ Cn×n

is a set of matrices containing all slopes P (x̌, y) for y ∈ x̌+ z =: x. Finally, let
R ∈ Cn×n. Denote Kf (x̌, R, z,P) the set

Kf (x̌, R, z,P) := {−Rf(x̌) + (I −RP )z : P ∈ P , z ∈ z}. (2)

Then, if Kf (x̌, R, z,P) ⊆ intz, the function f has a zero x∗ in

x̌+Kf (x̌, R, z,P) ⊆ x.

Moreover, if P also contains all slope matrices P (y, x) for x, y ∈ x, then this
zero is unique in x.

Suppose that the closed-loop matrix A − SX is nondefective. Therefore, it
satisfies the following spectral decomposition

A− SX = V ΛW with V,Λ,W ∈ C
n×n, V W = I,

Λ = Diag(λ1, λ2, · · · , λn) diagonal.

In general the following identity holds

r
′(x) = (V −T⊗W

T )·
(

I ⊗ [W (A− SX)W−1]T + [V −1(A− SX)V ]T ⊗ I
)

·(V T⊗W
−T ),

where ⊗ stands for the Kronecker product of matrices. Hence, an approximate
inverse for r′(X) is

R = (V −T ⊗WT ) ·∆−1 · (V T ⊗W−T ), (3)

where ∆ = I ⊗ΛT + ΛT ⊗ I. For any matrix X ∈ Cn×n and any vector z ∈ Cn2

we have(
In2 −R(In ⊗ (A− SX)T + (A− SX)T ⊗ In)

)
z =

(V −T ⊗WT ) ∆−1 Ω (V T ⊗W−1)z, (4)
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where Ω = ∆− In ⊗
(
W (A− SX)W−1

)T −
(
V −1(A− SX)V

)T ⊗ In.

Theorem 2. Suppose that S and the solution X for the CARE (1) are
both symmetric matrices. The interval arithmetric evaluation of the Fréchet
derivative of R(X) contains slopes P (y, x) for all x, y ∈ x.

Formula (4) together with the above theorem are what we need for enclosing
the set {(I−RP )z : P ∈ P , z ∈ z}, as a part of our modified Krawczyk operator
Kr(x̌, R, z,P) defined in (2). Here, r := r(x) denotes the vector form of the
CARE (1) and R denotes our factorized preconditioner (3). Note that Ω is close
to a diagonal matrix and also the multiplication by ∆−1 can be done cheaply
via Hadamard division. In addition, the first term −Rr(x̌) in (2), where R
is defined by (3 ), can be enclosed in a similar fashion. An important point
is the use of formula vec(ABC) = (CT ⊗ A)vec(B), where vec(.) denotes the
operator of stacking the columns of a matrix into a long vector. As a result,
our algorithm needs only O(n3) arithmetic operations. It is mainly based on
matrix-matrix multiplications and therefore can be implemented very efficiently
in Level 3 BLAS. Numerical results will be reported at the conference.
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We can distinguish between four variants of the general real power function
xy depending mainly on the domain. For strictly positive values of x, e.g.,
powers with arbitrary y can be computed without problems, whereas adding
the powers of 0 infiltrates the problem of determining 00. In the history of
mathematics we can find quite a few papers that support the opinion that
00 = 0, but also many others that support 00 = 1. The decision for one of these
alternatives can not be taken without regarding the specific context. If there
is no such context, we propose to define that xy is undefined for (0, 0). For
negative x, it certainly makes sense to allow integer exponents only and thus
leading to a discrete domain. Nevertheless the semantics is clearly and uniquely
defined. This variant has another advantage, it equals exactly the evaluation
of the complex variant applied to real inputs. Finally we discuss the variant
which is defined for rational exponents with odd denominators. This variant
may have some applications in interval analysis, because the domain is dense in
the corresponding contiguous interval.

In this talk we discuss those four variants and try to solve the contentious
issues depending on the context. We start with a detailed analysis of the be-
haviour when x or y approach ±∞ or ±0 or when x approaches 1. With this
information interval versions of each variant can be computed by efficient algo-
rithms. For the positive case, e.g., we developed some improvements to IntLab
that reduce the runtime by 40%. For the other variants algorithms are based on
the positive version. It is, however, strange to define a function that is meant
for an interval extension on a discrete grid. The algorithms are accompanied by
a rigorous treatment of rounding errors.

Last but not least we test our implementation with respect to accuracy and
speed. The former tests mainly use the multiprecision interval library MPFI,
some extension of its functionality is needed. The efficiency tests compare the
runtime with several other well known libraries: C-XSC, filib++ and Boost as
well as IntLab.
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There are a few difficulties with the inversion of interval functions. Plain
transformations may create results that are either of low quality, i.e., by far
overvalue the correct answer, or are wrong.

In this context “reverse operations” [2] act as an effective solution for the
problems encountered: A single operation shall compute an interval containing
solutions to basic equations, which comprise intervals, interval operations and
optional interval constraints.

For a (partial) binary arithmetic operation ◦ there are two binary
reverse operations on intervals, ◦−1 : IR × IR → P(R) and ◦−2 :
IR× IR→ P(R), defined by

◦−1 (y, z) = {x ∈ R | there exists y ∈ y with x ◦ y ∈ z} and

◦−2 (x, z) = {y ∈ R | there exists x ∈ x with x ◦ y ∈ z}

with x,y, z ∈ IR.

Note that in principle we have

◦−1 (y, z) = z1/y

◦−2 (x, z) = logx z

The details are analyzed in the paper. It turns out that already for the most
restricted domain 8 groups of inverse images are necessary depending on the
overlapping relation [1].
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Inverse images of the other variants are more complicated and require dis-
tinction between a lot more cases. With an application or extension of the
overlapping relation we show that 26 cases are sufficient. However, in most
cases the reverse interval operations produce results which can simply be com-
puted as the hull of one or two intervals which are possibly to be intersected
with the subset of even or odd integral numbers. But, for the first reverse func-
tion there are even some cases where the result is a union of infinitely many and
possibly disjoint intervals.

The algorithm works as follows: At first, an enclosure of the union of the
many intervals is computed, which, when intersected with x, already produces
an enclosure of the result. Each boundary of this enclosure is sharp if, and only
if, it is part of the union of many intervals. Thus, the result’s boundaries can
further be optimized if they are not part of the reverse operation’s result. At
this point, the algorithm utilizes that the relevant part of the inverse image of
z consists of individual lines which are parallel to the x axis. The idea behind
the algorithm is illustrated graphically.
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Linear programming is undoubtedly one of the most frequently used tech-
niques in problem solving. Since real life data are often not known precisely due
to measurement errors, estimations and other kinds of uncertainties, we have to
reflect it in the theory of linear programming. Modeling such uncertainties by
intervals gives rise to the research area called interval linear programming [1,2].
Herein, we suppose that interval domains of uncertain quantities are a priori
given, and the aim is to calculate verified results giving rigorous enclosures (or
other types of answers) valid for all possible realizations of interval data.

There are many problems regarding interval linear programming, such as
verifying feasibility, (un)boundedness or optimality for some or for all realiza-
tions of interval quantities; some of them are polynomially solvable, but the
others are NP-hard. However, there are two main directions of determining
(enclosing) the optimal value range and the optimal solution set. While the
former was intensively studied in the past and many results concerning com-
putational complexity and methods are available, there is still lack of theory
and practical methods for the latter. Rigorously and tightly enclosing the op-
timal solution set is the most challenging problem in this subject. Traditional
approaches were based on the so called basis stability, meaning that there is a
basis being optimal for each realization of intervals. Under basis stability, the
problems can be solved very efficiently. Checking this property may be com-
putationally expensive in general, but strong sufficient conditions exist. The
problem is, however, that in many situations (e.g. under basis degeneracy), the
problem is not basis stable even for tiny intervals. Overcoming the non-basis
stability is remaining to be an important but difficult problem.
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In the talk, we survey the known results and present recent developments
as well. We focus on the computational complexity, methods and other aspects
of enclosing the optimal value range and the optimal solution set. We discuss
applications of this technique in diverse areas. Besides many real-world opti-
mization problems (in economics, environmental management, logistics, . . . ),
interval linear programming may also serve as a supporting tool for linear re-
laxation in constraint programming and global optimization, in matrix games
with inexact data or in statistics in linear regression on uncertain data by using
L1 or L∞ norm. Sensitivity analysis, frequently used in economical operations
research, can be extended from the traditional one-parameter case to the case
with multiple parameters situated in diverse positions. Eventually, we mention
some open problems and challenges for the future research.
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Real-life problems can be described by different means: difference and dif-
ferential equations, linear and nonlinear systems, etc. The various descriptions
can be often transformed to each other using only linear equalities (or inequal-
ities). That is why interval linear systems are still in the focus of researchers.
By an interval linear system, we mean a system Ax = b, where A is an interval
m×n matrix and b is an m−dimensional interval vector. We will now consider
a special class of these systems called overdetermined systems. They are the
systems for which m > n holds. Simply said, they have more equations than
variables.

When we talk about interval linear systems, it is necessary to mention, what
we mean by the solution of these systems. The solution set Σ of an interval linear
system Ax = b is an accumulation of all solutions of all instances of this interval
system. We get an instance of an interval system, when we independently pick
the values from all interval coefficients of the system thus obtaining a point real
system. In other words,

Σ = {x | Ax = b for some A ∈ A, b ∈ b}.

In what follows, we consider Σ, not the least squares or other approximation of
the solution set. If no instance of the interval system has a solution, we call this
system unsolvable. We are interested in the tightest possible n-dimensional box
(aligned with axes) that encloses the solution set of an interval system. It is also
called interval hull of the solution set. Finding it is an NP-hard problem, so it
is often sufficient to find an as narrow as possible n-dimensional box containing
the hull that is called an interval enclosure of the solution set.
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Square systems (those for which m = n holds) can possess some advanta-
geous properties. Their matrix A can be diagonally dominant, positive definite,
M-matrix and many more. And we know that our algorithms behave well in
these cases. Unfortunately, overdetermined systems do not posses any of these
properties. That is why it is sometimes more difficult to solve these systems.
However, we can use some earlier designed numerical methods and adapt them
to be suitable for computing with intervals.

Here we would like to present the summary of the methods applicable to the
overdetermined interval linear systems. They are Gaussian elimination, classical
iterative methods, the Rohn method, supersquare and subsquare methods or
linear programming.

After introducing each method, we would like to talk about the comparison
of all the mentioned methods based on extensive numerical testing for random
matrices. We also would like to point out discovered properties of the methods.
Some methods fail if the radii of interval coefficients of a system exceed some
limits. Some of them, despite their simplicity (supersquare and subsquare meth-
ods) return surprisingly narrow results. Another important property of some
methods (Gaussian elimination, subsquare methods) is that they can quickly
determine, whether the system is unsolvable. This can be useful in applications
(system validation, technical computing) where we do care if the systems are
solvable or unsolvable.

[1] E.R. Hansen, G.W. Walster, Solving overdetermined systems of in-
terval linear equations, Reliable Computing, 12(2006), No. 3, pp.239–243.
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On computers real numbers are approximated by floating-point numbers de-
fined by the IEEE754 formats [1]. For most computations these formats are
precise enough even though the induced approximation errors inherently. How-
ever in some cases the accuracy of the calculation is critical and the user needs
to certify that his program will always yield an accurate enough output for every
valid input. As it is impossible to check the validity of a calculation for every
inputs, static analyzers such as Fluctuat [4] or Astrée [2] rely on an interval or
relational representation of the inputs, combined to abstract interpretation.
Sardana is a tool designed to automatically rewrite numerical computations per-
formed in floating-point arithmetics in order to optimize their accuracy. Sardana
works directly on the source code of a LUSTRE program such as the ones used
in real avionic software and produces a new source code as well as an absolute
bound of error which is less than the original one. To achieve this Sardana uses:
(i) Interval analysis, to handle large sets of inputs and not only isolated traces,
(ii) A novel intermediate representation of program called APEG [5] which al-
lows us to manipulate many transformed versions of the initial program in a
compact way, (iii) A local search heuristic [5] to synthesize from an APEG a
new version of the program, (iv) And abstract interpretation [3] to enforce the
validity of our analysis of the accuracy.

The first challenge is how to transform a program into a more accurate one.
As there is an exponential number of ways to write an arithmetic expression
(e.g. a simple sum of n terms), we cannot exhaustively generate all possible
transformations. This problem is closely related to the phase ordering problem
of compilers. We use abstract interpretation to narrow down this search space
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while allowing to represent in an abstract way as many transformed versions
as possible of the initial program. Our structure of Abstract Program Expres-
sion Graph (APEG) is built from the syntactic tree of the source code, and is
a compact and efficient way to handle multiple versions of a program without
duplication and exponential growth of the structure. As there are many trans-
formations which involve only the same part of the program, APEGs merge them
locally into one equivalence class without duplicating the rest of the structure.
Also, we introduce the concept of abstraction boxes into APEGs, which are de-
fined by an operator and a set of sub-expressions. Each abstraction box allows
to represent the exponential number of expressions that can be synthesized with
the given operator over the set of sub-expressions of the box.

Next, Sardana has to extract from an APEG a program which has a better
numerical accuracy. We use a limited depth search strategy with memoriza-
tion. Intuitively we select the best way to evaluate an expression by considering
only the best way to evaluate its sub-expressions. To accurately calculate both
rounding errors and floating-point values, Sardana uses the GMP and MPFR
libraries. Sardana is also able to manipulate any floating-point IEE754 format
and fixed-point arithmetic.
Several experimental results have been obtained on various benchmarks and
real-case applications, such as: summation (results are 50% closer to the real
values), polynomial functions like Taylor expansions (20% to 30% more ac-
curate), and real avionic codes (10% more accurate half the time). Finally,
Sardana provides a graphical interface allowing the user to specify the analyzer
parameters easily and analyze the results in a user friendly way.
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When dealing with complex mobile robots, we often have to solve a huge set
of nonlinear equations. They may be related to some measurements collected
by sensors, to some prior knowledge on the environment or to the differential
equations describing the evolution of the robot. For a large class of robots these
equations are uncertain, enclose many unknown variables, are strongly nonlinear
and should be solved very quickly. Hopefully, the number of these equations is
generally much larger than the number of variables. We can assume that the
system to be solved has the following form






fi (x, yi) = 0,
x ∈ Rn, yi ∈ [yi] ⊂ Rpi ,

i ∈ {1, . . . ,m} .
(1)

The vector x ∈ Rn is the vector of unknown variables, the vector yi ∈ Rpi is
the ith data vector (which is approximately known) and fi : Rn × Rpi → R is
the ith function. The box [yi] is a small box of Rn that takes into account some
uncertainties on yi. Here, we assume that the number of equations m is much
larger that the number of unknown variables n (otherwise, the method will not
be able to provide accurate results). Typically, we could have n = 1000 and
m = 10000. In order to provide a fast polynomial algorithm able to find a box
[x] that encloses all feasible x, we shall associate, to each equation fi (x, yi) = 0,
a contractor Ci : IRn → IR

n that narrows the box [x] without removing any
value for x consistent with the ith equation. Such a contractor can be obtained
using interval computations [1]. Then we iterate each contractor until no more
contraction can be performed. An illustration of the procedure is Figure 1,
where the sequence of contractors C1, C2, C3, C1, C2, C3 . . . is applied. Note
that the first contractor C1 was able to contract the initial box [x] = [−∞,∞]

2

to the box containing the thick circle.
As an example, we shall consider the SLAM (Simultaneous localization and

map building) problem asking whether it is possible for an autonomous robot
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Figure 1: Illustration of the propagation process

to move in an unknown environment and build a map of this environment while
simultaneously using this map to compute its location. It is shown in [2] that
the general SLAM problem can be cast into the form (1). The corresponding
system is strongly nonlinear and classical non-interval methods cannot to deal
with this type of problems in a reliable way. The efficiency of the approach
will be illustrated on a two-hour experiment where an actual underwater robot
is involved. This four-meter long robot build by the GESMA (Groupe d’étude
sous-marine de l’Atlantique) is equipped with many sensors (such as sonars,
Loch-Doppler, gyrometers, ...) which provide the data. The algorithm is able
to provide an accurate envelope for the trajectory of the robot and to compute
sets which contain some detected mines in less than one minute. Other examples
involving underwater robots and sailboat robots will also be presented.
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The external lightning protection system (LPS) is intended to intercept di-
rect lightning flashes to a structure, including flashes to the side of the structure.
The probability of structure penetration by a lightning current is considerably
decreased by the presence of a properly designed air-termination system. It
interacts with lightning. The form of protection zones and protection of objects
and structures depend on its configuration. In the design practice, horizontal
sections of protection zone, made at a certain height (usually the highest build-
ing is used), are commonly used for checking the safety of objects. The facility is
considered to be protected if it is totally covered with these sections. Otherwise,
it is necessary to determine the total unprotected area. Knowing the contours
at several levels makes it possible to check whether a structure of complicated
form is completely inside the protected volume.

Such section is constructed as a group of protection zones sections, which are
formed by individual rods as well as by their interactions (pair, triple, multiple).
The shape of the section is described by linear and nonlinear constraints. It de-
pends on the applied model of lightning attraction to ground objects. Geomet-
rically, there is a collection of planar closed objects with complicated form. The
boundary of the region (outer boundaries and holes) consists of end-connected
curves where each point shares only two edges.

Usually sections are based on the geometric modeling kernel, which incor-
porates low-level data structures and algorithms to support mixed-dimensional
geometric modeling. For converting objects that enclose an area into a region,
we use Boolean operations and algorithms selecting closed contours. This op-
erations take a long time to complete. Furthermore, we often have to deal with
errors in constructions on the kernel side.
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We propose a method for computing inner and outer approximations of
unprotected region by interval pavings. In this paper we shall consider a covering
method that provides a tight piecewise linear interval enclosure of the region.
The method is based on the branch-and-prune algorithm suggested in [2], and
it generates a covering of the solution set by a collection of smaller and smaller
boxes which give increasingly accurate information about the location of the
boundary of the region. The proposed new method can be used to speed up
geometric computations for lightning protection systems design.

Further details will be considered too, namely, the possibility (and usability)
of preconditioning for improving the result and performance of the subdivision
algorithm as well as the possibility of parallelizing the method.

We are going to present and discuss numerical results produced by our tech-
nique.
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Affine arithmetic (AA) is an extension of interval arithmetic. In AA, quan-
tities are represented by affine forms:

a0 + a1ε1 + a2ε2 + · · ·+ anεn

where εi are dummy variables which satisfy −1 ≤ εi ≤ 1 and express the
relation between quantities written in affine form. In AA, number of ε gradually
increases and that makes calculation slower.

In this paper, we propose an algorithm to reduce the number of εs .
Note that we should apply the algorithm to as many affine variables on

memory as possible simultaneously. Application to small affine variables is not
effective.

Consider p affine variables which have q dummy εs:

a10 + a11ε1 + · · ·+ a1qεq

a20 + a21ε1 + · · ·+ a2qεq

...

ap0 + ap1ε1 + · · ·+ apqεq

we can reduce the number of ε by ‘intervalize’ several εs. Let S be a index set
of εs which we want to erase, we can erase εs by substituting as follows:

∑

i∈S

a1i → (
∑

i∈S

|a1i|)εq+1

...∑

i∈S

api → (
∑

i∈S

|api|)εq+p
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Here, p number of new εs are added in order to represent the generated interval.
In the following, we consider to reduce number of εs to r . We select q−(r−p)

εs which have small ‘intervalize penalty’ and intervalize these εs, then we can
reduce the number of εs to (r − p) + p = r :

∑
i6∈S a1i + (

∑
i∈S |a1i|)εq+1

...
∑

i6∈S api + (
∑

i∈S |api|)εq+p

Now, we will show how to select εs whose ‘intervalize penalty’ are small. Let
vectors v1, v2, · · · , vq ∈ Rp be vi = (ai1, · · · , aip)T .

Definition 1 (Penalty Function) For vector v = (a1, · · · , ap)T we define
penalty function P as follows:

• When a1 = a2 = · · · = ap = 0, we define P (v) = 0.

• Otherwise, let as, at be the first and second values in the order of absolute
values |ai|. That is, |as| ≥ |at| ≥ |ai| (i 6= s, t) hold. Then we define

P (v) =
|as| · |at|
|as|+ |at|

.

We should choose q − (r − p) number of ε in ascending order of the value
P (vi) . Note that the penalty function has the following property.

Theorem 1 (Property of Penalty function) Let v = (a1, · · · , ap)T ∈ Rp

and norm of Rp be maximum norm. Let L ⊂ Rp be a line segment defined by

(a1 · · ·ap)T ε (−1 ≤ ε ≤ 1)

and let B ⊂ Rp be a hyper-rectangular defined by

(a1ε1, · · · , apεp)T (−1 ≤ εi ≤ 1).

Then Housedorff distance between L and B becomes H(L,B) = 2P (v).

That is, P (v) is the maximum distance between L (a line segment defined
by original v) and B (hyper-rectangular generated by intervalization of L). We
can say that the smaller P (v) is, the smaller increase of range by intervalization.
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Carsten Rösnick3, Martin Ziegler3

1Tokyo University and 2Universität Trier and 3TU Darmstadt

Keywords: computable analysis, complexity theory, analytic functions

Recursive Analysis is the theory of real computation by approximation up to
guaranteed prescribable absolute error. Initiated by Alan Turing, it formal-
izes verified numerics in unbounded precision [1,7] in the common framework
of the Theory of Computation [2]. More precisely, a function f : [0, 1] → R

is called computable iff a Turing machine can, upon input of every sequence
am ∈ Z with |x−am/2m+1| ≤ 2−m for x ∈ [0, 1], output a sequence bn ∈ Z with
|f(x)− bn/2n+1| ≤ 2−n. Any such f is necessarily continuous. More generally,
the Type-2 Theory of Effectivity [9] studies, compares, and combines so-called
representations, that is, encodings for separable metric spaces like C[0, 1]. Refin-
ing mere computability, real complexity theory investigates the running time in
terms of the output precision n; see, e.g., [5] and the references therein. Asymp-
totic growth, polynomial in n, is generally considered practical. Concerning
operators and functionals on C[0, 1], recall the following strong, nonuniform
lower bounds relative to the millennium problem and its strengthenings:
• Max(f) :=

(
[0, 1] ∋ x 7→ max{f(y) : 0 ≤ y ≤ x}

)
∈ C[0, 1] is polynomial-

time computable for every polynomial-time computable f ∈ C[0, 1] iff P =
NP ; cmp. [5, Theorem 3.7].

•
∫
f :=

(
[0, 1] ∋ x 7→

∫ x

0
f(y) dy

)
∈ C[0, 1] is polynomial-time computable for

every polynomial-time computable f ∈ C[0, 1] iff FP = #P ; cmp. [5,
Theorem 5.33].

• The (unique local) solution u() =: Solve(f) to the ordinary differential equa-
tion u′(t) = f

(
t, u(t)

)
, u(0) = 0, is polynomial-time computable for every

polynomial-time computable Lipschitz -continuous f iff P = PSPACE ;
cmp. [3, Theorem 3.2].

Restricted to functions f : [0, 1] → R analytic on some complex open neigh-
bourhood of [0, 1] on the other hand, the above operators Max,

∫
, Solve have

been shown to map polynomial-time computable arguments to polynomial-time
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computable values; cmp. [6] and the references therein. However these results
are nonuniform, too, in referring to the dependence on n only while regarding
arguments f as arbitrary but fixed. We strengthen the latter by presenting and
analyzing algorithms receiving both n and f as inputs. More precisely, consider
the following three data structures representing a real analytic f : [0, 1]→ R:

α̃: As a finite list
(
M, (xm), (am,j), (Lm), (Am)

)
of dyadic centers xm ∈ D∩[0, 1]

(1 ≤ m ≤ M), binary integer bounds Am, and inverse radii Lm ∈ N

in unary such that the intervals
[
xm − 1/(4Lm), xm + 1/(4Lm)

]
cover

[0, 1], together with (programs computing the) power series coefficients
am,j = f (j)(xm)/j! of f around xm satisfying |am,j| ≤ Am · Lj

m.

β̃: A program computing f , together with an integer L in unary such that f is
complex analytic even on (an open neighbourhood of) the closed rectangle
RL := {x + iy | − 1

L ≤ y ≤ 1
L ,− 1

L ≤ x ≤ 1 + 1
L} and a binary integer

upper bound B to |f | on said RL.

γ̃: A program evaluating f |D, together with integers A (in binary) and K (in
unary) such that |f (j)(x)| ≤ A ·Kj · j! holds for all 0 ≤ x ≤ 1.

We prove them mutually second-order [4] polynomial-time equivalent; and we
devise second-order polynomial-time algorithms on them for i) evaluation, ii) ad-
dition, iii) multiplication, iv) differentiation, v) integration, and vi) maximiza-
tion. These may help to improve the mere computability of Bloch’s Constant
[8] to an algorithm actually calculating some new digits of it.
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In mathematically rigorous complete search in global optimization, a sharp
upper bound on the global optimum is important for the overall efficiency of the
branch and bound process. Local optimizers, using floating point arithmetic,
often compute a point close to an actual global optimizer. However, particu-
larly with many equality constraints or active inequality constraints, methods
for using this approximate local optimizer to obtain a mathematically rigorous
upper bound on the global optimum fail. On the other hand, there are various
such techniques. Several of these are:

Verify feasibility of a reduced system: We identify equality constraints
and active inequality constraints. Provided the total number m of such
constraints is less than the number of variables n, we identify a subspace
of dimension m in which the m values of the m constraints are sensitive,
then apply an m-dimensional interval Newton method within this sub-
space to prove existence of a feasible point within a small box. This is the
technique espoused in [2] or [1], [§5.2.4].
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Use the Kuhn–Tucker or Fritz John conditions: Perform an interval
Newton method in the m1 + m2 + n + 1-dimensional space defined by
the Fritz John conditions (variables and multipliers), where m1 and m2

are the numbers of equality and inequality constraints. This can prove ex-
istence of a critical point within a small box surrounding an approximate
optimum.

Relax the equality constraints to inequality constraints: This is the ap-
proach followed, say, in [3]. Although a slightly different problem is being
solved, a point strictly interior to the feasible region can be found, and a
simple interval evaluation at that point can be used to verify feasibility.

The preceding verification techniques all must start with a point that is approx-
imately feasible or approximately optimal; the technique is then either applied
directly to that point or a small box is constructed around the point, within
which feasibility can be verified. Some ways of obtaining such a point are:

Use a local (floating point) optimizer (such as IPOPT [4]);

Use a generalized Newton method to project onto the feasible set (that is,
apply Newton’s method with the pseudo-inverse of the Jacobian matrix
of the constraints);

Use specialized techniques to project onto or into the feasible set, starting
with an approximate feasible point or approximate optimizing point.

We present our experience and summarize the advantages and pitfalls of
each of these techniques.
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We consider the optimal value function of parametric linear programming
problem

f(c, A, b) = min{cTx : Ax ≤ b, x ≤ x ≤ x}
where c, x, x ∈ Rn, A is m× n matrix, b ∈ Rm. We assume that coefficients of
c, A and b vary within the prescribed intervals

cj ≤ cj ≤ cj , j = 1, . . . , n,

aij ≤ aij ≤ aij , i = 1, . . . ,m, j = 1, . . . , n,

bi ≤ bi ≤ bi, i = 1 . . . ,m,

x and x are fixed. Optimal value function f(c, A, b) is in general nonsmooth
and nonconvex. The problem is to find bounds f and f such that

f ≤ f(c, A, b) ≤ f.

To do this we consider auxiliary problems of minimizing and maximizing f(c, A, b).
A branch and bound type global optimization approach is suggested. It is based
on concepts of convex and concave support functions [1]. Illustrative numerical
examples are presented.
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A major goal of a current joint project between the Universities of Rostock
and Duisburg-Essen is to design and develop robust and accurate control strate-
gies for solid oxide fuel cells (SOFCs). For this purpose, system models based
on ordinary differential equations (ODEs) are being developed [2]. Unlike most
state-of-the-art models, they can be used to devise control laws for SOFCs which
are valid not only for fixed but also for nonstationary operating points. To al-
low users to employ the new models and techniques easily in combination with
different verified tools, we implement the environment VeriCell. It features
an intuitive graphic interface for construction of SOFC models from predefined
building blocks and is based on the framework UniVerMeC [1] which provides
a unified access to various verified arithmetics and algorithms. New SOFC
component models can be added to VeriCell as they are being developed, for
which purpose a plug-in based interface is adopted.

In this talk, we present the environment with the focus on efficient imple-
mentation of verified optimization routines for parameter identification in SOFC
systems. The task is to minimize a quadratic cost function which contains the
solution to the initial value problem (IVP) for the above-mentioned ODEs as
one of its constituent parts. At the moment, the exact solution to the IVP is
approximated by the explicit Euler method [3]. The cost function is complex in
practice since it is composed of many summands (the number of which is propor-
tional to the number of measurements) and is strongly influenced by cancelation.

77



The ODE-based model takes into account preheated air and fuel gas supplied
to the SOFC system as well as the corresponding reaction enthalpies. The pa-
rameters of interest describe the thermal resistances of the stack materials, the
dependency of the heat capacities on the temperature, and the heat produced
during the exothermic electrochemical reactions in each individual fuel cell.

Important aspects in solving this task are to increase the model accuracy
and to reduce computing times. In the first case, the use of verified IVP solvers
such as VNODE-LP instead of the Euler approximation is necessary. In the
second case, the employment of the GPU might be profitable, along with the
ordinary multi-kernel parallelization. In this talk, we show what steps are nec-
essary to be able to identify parameters of SOFC models of different dimensions
using parallelization techniques and the GPU, highlighting in the latter case the
questions of accurate implementation, efficient memory use, and correct choice
of the working precision. These issues are demonstrated on examples modeled
and simulated in VeriCell, which gives an overview of its main features.
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In interval computations, one of the most widely used methods of efficiently
computing an enclosure Y the range y = f(x1, . . . ,xn) of a given function
f(x1, . . . , xn) on a given box x = x1× . . .×xn is the Mean Value (MV) method:

Y = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x) · [−∆i,∆i], where x̃i is a midpoint of the i-th

interval, ∆i is its radius, and the ranges of the derivatives f,i
def
=

∂f

∂xi
can be

estimated, e.g., by using straightforward interval computations; see, e.g., [5].

This method has excess width O(∆2), where ∆
def
= max ∆i.

Can we come up with more accurate enclosures? We cannot get too drastic
an improvement, since even for quadratic functions f(x1 . . . , xn), computing
the interval range is NP-hard (see, e.g., [4,7]) – and therefore (unless P=NP), a
feasible algorithm with excess width O(∆2+ε) is impossible. What we can do is
try to decrease the overestimation of the quadratic term. It turns out that such
a possibility follows from an inequality proven by A. Grothendieck in 1953 [2].

Specifically, the MV method is based on the 1st order Mean Value Theorem
(MVT): f(x̃ + ∆x) = f(x̃) +

∑
f,i(x̃ + η) · ∆xi for some ηi ∈ [−∆i,∆i] [3].

Instead, we propose to estimate the range by adding estimates for ranges of
linear, quadratic, and cubic terms in the 3rd order MVT: f(x̃ + ∆x) = f(x̃) +∑
f,i(x̃)·∆xi+

∑
f,ij(x̃)·∆xi ·∆xj+

∑
f,ijk(x̃+η)·∆i ·∆j ·∆k. The range of the

cubic term is estimated via straightforward interval computations; the resulting
estimate is of order O(∆3). The range of the linear term f(x̃)+

∑
f,i(x̃)·∆xi can

be explicitly described as [ỹ−∆, ỹ+∆], where ỹ
def
= f(x̃) and ∆ =

∑ |f,i(x̃)|·∆i.
So, the remaining problem is: how accurately can we find the range [−Q,Q]
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of the quadratic term
n∑

i,j=1

aij · ∆xi · ∆xj (where aij
def
= f,ij(x̃)), on the box

[−∆1,∆1]× . . .× [−∆n,∆n].
By re-scaling, we conclude that Q is equal to the maximum of the function

B(z)
def
=

n∑
i,j=1

bij · zi · zj (where bij
def
= aij · ∆i · ∆j), over values zi ∈ [−1, 1].

Grothendieck’s inequality enables us to estimate the maximum Q′ of the related

bilinear function b(z, t)
def
=

n∑
i,j=1

bij · zi · tj when zi, tj ∈ {−1, 1}: namely, we can

feasibly compute Q′′ for which K−1
G ·Q′′ ≤ Q′ ≤ Q′′, where KG ∈ [1, 1.782] (see,

e.g., [1,6]). One can easily see that Q′ is equal to the maximum of b(z, t) when
zi, tj ∈ [−1, 1]. Since B(z) = b(z, z), we have, Q ≤ Q′; on the other hand, since
b(z, t) = B((z + t)/2)− B((z − t)/2), we have Q′ ≤ 2Q. Thus, Q′/2 ≤ Q ≤ Q′

and so,
Q′′

2KG
≤ Q ≤ Q′′.

Hence, by computing Q′′, we can feasibly estimate the quadratic term Q
accurately modulo a small constant factor 2KG ≤ 3.6.
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The problem of constructing trajectory tubes (in particular, reachable tubes
which describe a dynamic of reachable sets) is an essential theme in control
theory [1]. Since the practical construction of these tubes may be cumbersome,
the different numerical methods are devised for this cause. Among them the
techniques were developed for estimating reachable sets by domains of some
fixed shape such as ellipsoids, parallelepipeds, zonotopes. In particular, box-
valued estimates may be constructed by means of interval calculations. But
such estimates can turn out to be rather conservative and even unbounded due
to the wrapping effect [2,3] known in interval analysis. To make possible exact
representations of reach sets A.B. Kurzhanski proposed to use families of fixed
shape estimates [1,4] and, moreover, families of so called tight estimates [4]. We
expanded this approach to polyhedral (parallelepiped-valued) estimates. The
family P of outer polyhedral estimates of reachable sets for linear differential
systems with parallelepiped-valued uncertainties in initial states and additive in-
puts may be introduced [5]. These estimates are determined by a given dynamics
of orientation matrices P (t) ∈ Rn×n (this function is the parameter of the fam-
ily) and by corresponding parameterized differential equations which describe
the dynamics of centers and “semi-axis” values of parallelepipeds. Considering
different types of the orientation matrix dynamics P (·) we obtain several sub-
families Pi ∈ P of the estimates with different properties, in particular, subfam-
ilies P3 and P1 of tight and touching [6] (tight in n specific directions) estimates
(both ensure the exact representations of reachable sets through intersections
of their units). Box-valued estimates may be attributed to the subfamily P2

of estimates with constant orientation matrices. In fact, the orientation matrix
V = P (0) at the initial time is the parameter of all mentioned subfamilies Pi.
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The paper presents our recent results on studying the properties of bound-
edness and unboundedness at the infinite time interval of outer polyhedral esti-
mates for reachable sets of systems with stable matrices. The mentioned proper-
ties are determined by interaction of three factors: the matrix V , the real Jordan
matrix for system’s matrix and the properties of the bounding sets for uncer-
tainties. The results of this interaction are different for different subfamilies Pi.
We formulate the corresponding criteria for boundedness / unboundedness of
estimates from P1 and P2 (see [7] for some of them), including characterizing
the possible degree of the growth of estimates in terms of the exponents. Then
we present new results concerning the subfamily P3 of tight estimates. In par-
ticular, it turns out that for two-dimensional systems all estimates from P3 are
bounded and in addition they turn out to be orthohogonal parallelepipeds. This
is unlike to two other cases mentioned above because there are two-dimensional
systems for which all estimates from P1 and P2 are unbounded (these systems
are of different kinds for P1 and P2). The results of numerical simulations are
presented.

The work was supported by the Program of the Presidium of the Russian
Academy of Sciences “Dynamic Systems and Control Theory” under support
of the Ural Branch of RAS (project 12-P-1-1019), by the State Program for
Support of Leading Scientific Schools of Russian Federation (grant 2239.2012.1)
and by the Russian Foundation for Basic Research (grant 12-01-00043).
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The design and development of two new software libraries for arbitrary pre-
cision real interval and complex interval computations are discussed. These
libraries provide a comprehensive set of basic operations and mathematical func-
tions. Their comfortable usage (due to C++ operator and function overload-
ing) is demonstrated on challenging examples like an extended interval Newton
method to automatically bound all zeros of a given function. The derivatives
are computed via algorithmic differentiation. The libraries are open source and
freely available on the net.
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To make a decision, we must:

• find out the user’s preference, and

• help the user select an alternative which is the best – according to these
preferences.

A general way to describe user preferences is via the notion of utility (see,
e.g., [7]): we select a very bad alternative A0 and a very good alternative A1;
utility u(A) of an alternative A if then defined as the probability p for which
A is equivalent to the lottery in which we get A1 with probability p, and A0

otherwise. One can prove that utility is determined uniquely modulo linear re-
scaling (corresponding to different choices of A0 and A1), and that the utility
of a decision with probabilistic consequences is equal to the expected utility of
these consequences.

Once the utility function u(d) is elicited, we select the decision dopt with
the largest utility u(d). Interval techniques can help in finding the optimizing
decision; see, e.g., [4].

Often, we do not know the exact probability distribution, so we need to
extract, from the sample, the characteristics of a distribution which are most
appropriate for decision making. We show that, under reasonable assumptions,
we should select moments and cumulative distribution function (cdf). Based on
a finite sample, we can only find bounds on these characteristics, so we need to
deal with bounds (intervals) on moments [6] and bounds on cdf [1] (a.k.a. p-
boxes).

Once we know intervals [u(d), u(d)] of possible values of utility, which deci-
sion shall we select? We can simply select a decision d0 which may be optimal,
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i.e., for which u(d0) ≥ max
d
u(d), but there are usually many such decisions;

which of them should be select? It is reasonable to assume that this selection
should not depend on linear re-scaling of utility; under this assumption, we
get Hurwicz optimism-pessimism criterion α · u(d) + (a − α) · u(d) → max [7].
The next question is how to select α: interestingly, e.g., too optimistic values
(α > 0.5) do not lead to good decisions.

In some situations, it is difficult to elicit even interval-valued utilities. In
many such situations, there are reasonable symmetries which can be used to
make a decision; see, e.g., [5]. We show how this method works on the example
of selecting a location for a meteorological tower [3].

Finally, while optimization problems are ubiquitous, sometimes, we need to
go beyond optimization: e.g., we need to make sure that the system is control-
lable for all disturbances within a given range. In such problems, modal intervals
[2] naturally appear. In more complex situations, we need to go beyond modal
intervals, to more general Shary’s classes.
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Interval branch-and-prune (b&p) methods (also called by a more general
term, branch-and bound [2]) are commonly used to solve systems of nonlinear
equations and several other problems. Their main drawbacks (as for most com-
binatorial approaches) are high computational cost and high memory space re-
quirements, in the pessimistic case. This computational burden can be avoided
by choosing proper heuristics and policies to adapt the process for a specific
problem. Hence, any improvements or accelerations to the process are very
worthwhile.

The paper is going to consider a preprocessing step of the b&p method, in
which some infeasible regions are removed from further search. For the system
of equations f(x) = 0, x ∈ x ⊆ Rn we can remove any box z ⊆ x such that
fi(z) > ε or fi(z) < −ε for all z ∈ z (i.e., fi(z) ⊆ [ε,+∞) or fi(z) ⊆ (−∞,−ε])
and an arbitrary equation i and some ε > 0.

Tools that are used to solve the above problem include:

• simple computations of interval extension of functions,

• solving the interval tolerance problem (see, e.g., [6]) for the linearized
problem,

• applying ε-inflation [2] to enlarge the infeasible box, being removed.

Such a procedure – simple and well-known – does not specify how to choose
initial regions for removal, which is crucial for efficiency. These regions can be
constructed around some “seeds” scattered around the problem domain. The
“seeds” can be chosen randomly, but a better approach is to use a deterministic
low-discrepancy sequence [1], e.g., the Sobol sequence [8], also called the LPτ

sequence. Points of this sequence are distributed in a very regular way over the
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search domain and the method remains deterministic (hence easy to investigate).
Also, there are efficient algorithms to generate such sequences [8].

According to the author’s observations, it seems most efficient to choose n
seeds, i.e., as many as the number of variables, independently of the number of
equations.

The considered approach seems particularly useful for underdetermined sys-
tems, where the solutions are not isolated points, but belong to a continuous
set. For such systems, we cannot verify the uniqueness of a solution (as, e.g., in
[7]) and – on the other hand – deleting infeasible regions may result in boxes in
which segments of the solution manifold are easy to verify.

Thanks to this approach, speedups of the rate 30-50% are obtained, at least,
for some problems. The paper is going to present a few variants of the method
and its cooperation with the equations systems solver developed in [3]–[5]. Com-
putational experiments for examples of underdetermined and well-determined
systems will be considered. Parallelization of the method will also be investi-
gated.
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The game theory has numerous applications in many branches of theoretical
and applied science. One of the basic solution concepts for non-cooperative
games is the idea of a Nash equilibrium [5]. It can be defined as a situation
(an assignment of strategies to all players), when it is not beneficial to any
of the players to change their strategy unless others will do so. Such points,
however, have several drawbacks – both theoretical (rather strong assumptions
about the players’ knowledge and rationality) and practical (they can be Pareto-
inefficient).

Hence, several “refinements” to the notion have been introduced, includ-
ing epsilon-equilibrium, strong Nash equilibrium, manipulated Nash equilibrium
and many others.

On the other hand, computing any kind of these solutions can be a hard
problem. In particular, very few computational methods exist for continuous
games.

In our previous paper [3] we proposed an interval algorithm to compute Nash
equilibria of a continuous non-cooperative game. In [4] it was shown that the
interval branch-and-bound (b&b) method can be used to compute the enclosure
of any set of points that fulfill a given condition, described, by some kind of a
predicate formula (see also [2]). But, as all refinements of the Nash equilibrium
can be described this way, computing all of them should be possible, using a
version of the b&b framework.

The paper is going to investigate interval algorithms for computing other
solution concepts for continuous games. Data structures and parallelization
issues will be considered. In particular, the concept of strong Nash equilibrium
[1] and some its modifications are going to be analyzed.
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As an example, we consider a simple and interesting pursuit game, developed
by Steinhaus [6,7]. Some variants and modifications of the game (including an
increased number of players) are going to be presented, too.
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The work considers an application of the general interval analysis methods
(e.g., [1]) to a special practical problem of parameters identification of a real
experimental chemical process [2]. In the process, concentration S(t) of peroxide
H2O2 is measured versus the time t of the decomposition catalytic reaction for
various nano-catalysts. Two possible models of the process are investigated.

Model 1. The experimental process is described by the function S(t, C, α,
BG) = C exp(αt) + BG. The vector of parameters to be identified is three-
dimensional: C > 0 is the initial value of concentration; α < 0 is the activity
coefficient of the first approximation model; BG > 0 is a background value.

Model 2. Here, the describing function is S(t, C, α, β,BG) = C exp(αt +
βt2) + BG, where, in comparison with Model 1, the coefficient β of activity of
the second approximation is introduced (β < 0). So, the vector of parameters
to be identified is four-dimensional.

The following input data are given [2]: the sample of noised measurements
{tk, Sk = S(tk)}, k = 1, 4; it is assumed that values tk are known exactly, but
measurements Sk are noised with the total additive errors bounded by modulus
as |ek| ≤ emax = 0.035. The experiments have been performed very carefully,
with very clear reactants, and small actual measuring errors. As a consequence,
the measurements were not distorted by jerks and there are no outliers in the
sample. The results of measuring the process for three various catalysts (1 – 3)
are given in Fig.1. To show the trends of the processes in Experiments 2 and 3,
the samples are approximated (black curves) by the standard regression method
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using Model 1. For the Experiment 1, the uncertainty intervals Hk of the length
2emax are drawn around each measurement: Hk = [Sk − emax, Sk + emax].

The problem of identification is formulated as follows: it is necessary to
identify (to construct) the set of admissible values of model parameters consistent
with the given input data.

We consider the main idea and procedures of the elaborated algorithms for
Model 1. The following procedures are performed. By shifting the background
parameter BG to the left-hand side and by standard logarithmic operation, the
initial function is transformed to the following function y = ln

(
S(t)−BG

)
with

linear dependence on the parameter α and a new parameter lnC: y(t, lnC,α) =
ln
(
S(t) − BG

)
= lnC + αt; note that the central term in this expression will

be an interval for each tk. Some reasonable a priori interval of the parameter
BG is introduced with a grid {BGm,m = 1,M}. Application of algorithms
[3] to constructing the informational set I(lnC,α,BGm) for each node BGm

(together with adjusting the position of the grid, its step, and number of nodes)
gives the whole desired informational set I(lnC,α,BG) as a collection (Fig.2) of
its cross-sections

{
I(lnC,α,BGn)

}
, n = 1, N over all admissible nodes N of the

adjusted grid, i.e., nodes, for which the cross-section is not empty. For Model 2,
the algorithms are similarly repeated for two grids in parameters BG and β.
Note that the elaborated approach is significantly faster and more accurate than
ones based on application of parallelotopes [1].
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In 1985, the IEEE 754 Standard for Binary Floating-Point Arithmetic [2]
provided concise means to achieve portability and provability of Floating-Point
(FP) programs. The high level of achieved reliability was the key to its widespread
adoption.

In 2008, a revised version, the IEEE 754-2008 Standard for Floating-Point
Arithmetic [1], was published. This revision reinforced the reproducibility as-
pects of the standard and added a few new operations and concepts, such as dec-
imal arithmetic, heterogeneous operations or fused-multiply-and-add (FMA).

As of today, the IEEE 754-2008 standard has already been accepted as the
preferred FP Arithmetic system. For instance, the P1788 working group∗ rec-
ognized it as a base for standardized Interval Arithmetic.

However, IEEE 754-2008 is currently not completely supported by Program-
ming Languages like C99, nor by Operating Systems, such as GNU/Linux. In
C99, some operations are missing and some are only partly compliant with
the standard. For instance, decimal-to-binary conversion in scanf commonly
implements correct rounding only for round-to-nearest mode or FMA might in-
correctly round twice. Complete IEEE 754-2008 compliance is available only on
Intel-compatible processors, through a closed-source library provided by Intel†.

For Open Source IEEE 754-2008 compliance, this work proposes the
libieee754 library. The library implements all the 354 operations IEEE 754-
2008 mandates for Binary FP Arithmetic in both binary32 and binary64 for-
mats. While the library is reasonably fast, speed was not the main purpose but
100% standard compliance. All operations support all rounding modes and set

∗cf. http://grouper.ieee.org/groups/1788/
†cf. http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/

2011Update/cpp/lin/cref_cls/common/cppref_libbfp754_ovrvw.htm
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all flags as required by IEEE 754-2008. The library is reentrant as there is no
global state other than the global state foreseen by the standard.

The functions in libieee754 performing correctly rounded conversion from
arbitrary length decimal character sequences to the binary FP formats should
be highlighted. They support all rounding modes and does not perform any
dynamic memory allocation. While the algorithms found in the literature [3] re-
sume to one-step correctly rounded decimal-to-binary conversion with unknown
memory consumption limits, the novel algorithm implemented in libieee754

performs decimal-to-binary conversion indirectly in three steps: first, convert
from decimal to binary and round to a floating-point midpoint, second, exactly
convert the binary midpoint back to decimal and third, round correctly. This
allows memory consumption to be known beforehand, avoiding any dynamic
memory allocation.

The algorithm for decimal-to-binary conversion set aside, the most impor-
tant difficulty when designing libieee754 was with the rounding-mode, which
cannot be queried by the library code, and with the IEEE 754 flags. Each
FP operation needed hence to be chosen with 4 rounding modes and possible
side-effects on flags in mind.

The libieee754 library was completely proven on paper and extensively
tested. The proofs are available for reference. Future work is supposed to bring
formal proofs, in a system such as Coq [4].

In the future, libieee754 is supposed to be extended with respect to the
binary128 format, decimal FP Arithmetic and the optional parts of the IEEE
754-2008 Standard. Additionally, the library’s code base should be extended to
allow for compilation on systems where no hardware floating-point support is
available and where a complete emulation of all floating-point operations using
integer instructions will be needed.
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We are interested in numerically fitting a curve through a given finite set of
points Pi = (xi, fi), i = 0, . . . , N + 1, in the plane, with a < x0 < x1 < · · · <
xN+1 = b. These points can be thought of as coming from the graph of some
function f defined on [a, b]. We are particularly interested in algorithms which
preserve local monotonicity and convexity of the data (or function). Here, we
shall focus only on those algorithms which use C1 piecewise quadratic inter-
polants.

Monotone and convex local C1 quadratic splines with perhaps one additional
knot in each subinterval between data points were considered by L.L. Schumaker
[7] (see also [2,5], and references therein). In these interactive algorithms the
location of additional knots allows the user to adjust spline to the data and to
take full advantage of the flexibility which quadratic splines permit. Some im-
provements of these algorithms were suggested in [1,4]. Very similar algorithms
were also obtained in [9].

In contrast with the previously published algorithms for shape preserving
quadratic splines which rely on local schemes, our algorithms are based on
global weighted C1 quadratic splines. Such splines generalize global quadratic
splines introduced by Yu.N. Subbotin [8] and are similar to weighted C1 cubic
splines [6]. We let the additional knots be the midpoints in each subinterval to
have actually their optimal location.

While there are many methods available for the solution of the shape-
preserving interpolation problem (see a very detailed literature review in [3]),
the shape parameters are mainly viewed as an interactive design tool for ma-
nipulating shape of a spline curve.
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The main challenge of this paper is to present algorithms that select shape
control parameters (weights) automatically. We give two such algorithms: one
to preserve the data monotonicity and other to retain the data convexity. These
algorithms based on the sufficient conditions of monotonicity and convexity for
C1 quadratic splines and adapt the spline curve to the data geometric behavior.
The main point, however, is to determine whether the error of approximation re-
mains small under the proposed algorithms. To this end we prove two theorems
to estimate error bounds. We show that by using special choice of shape pa-
rameters one can rise the order of approximation. We construct also weighted
B-splines and consider control point approximation. Recurrence relations for
weighted B-splines offer valuable insight into their geometric behavior.
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We consider systems of linear interval equations of the form

Ax = b,

where A = [A,A] is an interval m×n-matrix, b = [b, b] is an interval m-vector,
and x ∈ R

n. The interval matrix and the interval vector are traditionally
understood as the sets

A = {A ∈ R
m×n | A ≤ A ≤ A }, b = { b ∈ R

m | b ≤ b ≤ b }

(by Rm×n from now on we denote the set of m×n-matrices). It is also assumed
that A ≤ A, b ≤ b, and the inequalities between the matrices and the vectors
are understood elementwise and coordinatewise, respectively.

Following the papers [1], we suppose that an m × n-matrix Λ = (λij),
λij ∈ {−1, 1}, i = 1,m, j = 1, n and an m-vector β = (β1, . . . , βn)⊤,
βi ∈ {−1, 1}, i = 1,m are given along with the interval m×n-matrix A and the
interval m-vector b. The matrix A = (aij) is decomposed into the two matrices

A∃ = (a∃
ij) and A∀ = (a∀

ij) so that

a∃
ij =

{
aij , if λij = 1,

0, if λij = −1,
a∀
ij =

{
0, if λij = 1,

aij , if λij = −1.

Similarly, let us decompose the vector b = (b1, . . . , bm)⊤ into the two vectors

b∃ = (b∃1 , . . . , b
∃
m)⊤ and b∀ = (b∀1 , . . . , b

∀
m)⊤

such that

b∃i =

{
bi, if βi = 1,
0, if βi = −1,

b∀i =

{
0, if βi = 1,
bi, if βi = −1.
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It is furthermore obvious that A = A∀ + A∃, b = b∀ + b∃.
Definition (S.P.Shary [1]). For a given quantifier matrix Λ and a quantifier

vector β, the generalized AE-solution set of the type Λβ is

ΞΛ,β(A, b) =
{
x ∈ R

n | (∀A′ ∈ A∀ )(∀b′ ∈ b∀ )

(∃A′′ ∈ A∃ )(∃b′′ ∈ b∃ )( (A′ +A′′)x = b′ + b′′)
}
. (1)

The main purpose of our paper is to inquire into the algorithmic complexity of
the problem that arises in connection with these sets:

Problem. Find out whether the set (1) is unbounded or not.
In the rest of the paper, for the two m×n-matrices A = (aij) and B = (bij),

by A ◦ B we will denote their Hadamard product A ◦ B = (aijbij). Using the
well-known Oettli-Prager theorem, it is possible to obtain Oettli-Prager-type
description of the generalized solution sets.

For any given Λ and β, the equality

ΞΛ,β(A, b) = { x ∈ R
n | |Acx− bc| ≤ (Λ ◦∆)|x| + β ◦ δ },

holds, where Ac = 1
2 (A+A), ∆ = 1

2 (A−A), bc = 1
2 (b+ b), δ = 1

2 (b− b). Using
this description, we obtain the following

Proposition. The set ΞΛ,β(A, b) is unbounded if and only if for some
y ∈ Q = { x ∈ Rn | xi ∈ {−1, 1}, i = 1, n} there exists a solution to the
following system of linear inequalities (where Ty = diag{y1, . . . , yn})

{ −(Λ ◦∆)Tyx− β ◦ δ ≤ Acx− bc ≤ (Λ ◦∆)Tyx+ β ◦ δ, Tyx ≥ 0,

−(Λ ◦∆)Tyz ≤ Acz ≤ (Λ ◦∆)Tyz, Tyz ≥ 0,
∑i=n

i=1 yizi ≥ 1.
(2)

Theorem. If the functions Λ, β are easily computable and 1-saturate (the
definition can be found in [2]) then the Problem 1 is NP-complete.

In particular, it follows from the theorem that if P 6= NP then there does
not exist a criterion of unboundedness of the AE-solution set which is better
than checking solvability for 2n systems of the form (2).
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While approximate answers are accepted for pure Floating-Point Arithmetic
(FPA), Interval Arithmetic (IA) is supposed to give reliable results. Indeed IA
never lies as it provides lower and upper bounds that provably encompass the
true result. Basic IA achieves this enclosure property by taking all Floating-
Point (FP) roundings into account, rounding lower bounds down (▽) and upper
bounds up (△), or inflating the round-to-nearest result by a machine epsilon
[6]. E.g. interval addition [a, b] + [c, d] is implemented as [▽(a+ c),△(b+ d)].

However, basic IA often cannot be used as such [4,5]. First, each basic IA
operation uses both directed rounding modes (RM), hence requiring at least one
RM change. As this is an expensive operation on most processors requiring for
instance a pipeline flush, it should be avoided as often as possible. Second, basic
IA provides the elementary operations such as addition and multiplication only,
whereas most modern scientific computing needs high-level operations such as
matrix and vector addition and multiplication or linear system solving.

In the world of pure FPA, all these operations are available in fast and
highly tuned math libraries. The Intel Math Kernel Library (MKL) [1] is one
of the most advanced and widely used libraries for this purpose. In a decade of
existence, with a whole team working on it, it has reached significant maturity.

MKL did have high-level IA, particularly linear solvers, between 2005 and
2008 [2]. Then this part suddenly disappeared. Nowadays MKL provides FPA
only and implementations for IA would have to go through the same decade of
difficulties MKL has gone through to get from basic IA to high-level operations.

Recent papers and software tools such as Intlab therefore try to reuse the
FPA in MKL for IA by applying high-level reasoning on the code [4,5]. For
instance, for a matrix-matrix-product, MKL with the RM set to round-down
for all operations, should enable us to compute a matrix that is a lower bound for
the exact matrix product. By clever rewrites of IA formulas and a small number
of RM changes before calls to MKL, interval enclosures for IA operations can
hence be computed. Inflating the round-to-nearest result is not possible for
matrices as there is no “machine epsilon” for whole matrix operations.
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Here is where the trouble arrives: the reliability of the IA results boils down
to setting the RM for all subsequent FP operations reliably. Indeed suppose we
work in Matlab/Intlab (for other tools, like Maple, Mathematica, it is similar),
we have a mix of C code, MKL and specific Matlab or Intlab code.

For C code, fesetround exists. Matlab uses it, too. However e.g. printing
instructions might affect the RM again. How a RM change is propagated from
one thread or node of a cluster to all others is unspecified in the C standard.

In MKL the RM can be specified only in the VML (Vector Math Library)
part and any multi-threading and clustering behavior is not documented. Fur-
ther MKL executes for the same function different codes depending on word
length, the processor vendor or the possibility to use the x87 co-processor or
the SSE2 instruction set. In the generic code the internal computations are es-
sentially performed in extended precision and then converted back to double or
single. There is no known guarantee that the result actually is a reliable bound.

Moreover as mentioned in a March 2012 message on the reliable computing

mailing list by Frédéric Goualard, the RM can change independently of the one
specified by the programmer and obviously independently of the prerequisites
of other libraries. The quality of the final result is seriously compromised.

With such a mess, how can IA be called reliable? We cannot know in each
piece of code what will be the RM. So what do we know for a mix of codes?

We are thus calling for reliable support for setting the RM and clear docu-
mentation in all the tools mentioned, as they are MKL, Matlab, Intlab, Maple,
Gap. Otherwise publishing papers on reliable IA seems to be a waste of time.
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Based on several fundamental preceding research results[1–4], this talk aims
to propose a framework to provide high precision bounds for the leading eigen-
values of selfadjoint elliptic differential operator over polygonal domain:

−div (a∇u) + cu = λu in Ω, u = 0 on ∂Ω (1)

where a ∈ C1(Ω) and c ∈ L∞(Ω). The proposed framework has the following
features:

• the domain of eigenvalue problem in consideration can be of free shape,
which is because the finite element method with nice flexibility is success-
fully adopted in bounding the eigenvalues [2];

• it can deal with general selfadjoint elliptic operator, where the homotopy
method [1] plays an important role;

• the obtained eigenvalue bounds have high precision, which is due to Lehmann-
Goerisch’s theorem [3,4] and well constructed approximating base func-
tion.

The eigenvalue problem (1) is solved by considering the weak formulation:

Find u ∈ H1
0 (Ω), λ ∈ R, s.t. (a∇u,∇v) + (cu, v) = λ(u, v), ∀v ∈ H1

0 (Ω) , (2)

where H1
0 (Ω) is a kind of Sobolev function space. Let us denote the eigenvalues

by λ1 ≤ λ2 ≤ · · · . The high precision bounds for the leading eigenvalues {λi}
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are obtained in three steps.

Step 1: the base eigenvalue problem −∆u = λu is solved approximately in
a certain finite element space with approximate eigenvalues as

λ1,h ≤ λ2,h ≤ · · · ≤ λn,h ,

and an error estimation for the approximate eigenvalues is given as below [2],

λi,h
1 +Mhλi,h

≤ λi ≤ λi,h, (i = 1, · · · , n) , (3)

where Mh is computable quantity depending on domain shape and mesh size.
Step 2: the eigenvalue bounds for general elliptic operator in consideration is

obtained by applying the homotopy method [2], which estimates the eigenvalue
variation in transforming the base problem −∆u = λu to the one wanted. If
the domain is convex, this step can be simplified by extending the result of (3).

Step 3: the Lehmann-Goerisch’s theorem [3,4] is applied to sharpen the
bounds along with proper selection of base function to approximate the eigen-
function. To deal with the domain of free shape, the singular base function
corresponding to the singular part of eigenfunction, and Bezier patch over tri-
angulation of domain are used.

In the talk, we will also illustrate several examples to demonstrate the effi-
ciency of our proposed framework.
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We consider interval linear systems of the form Ax = b with interval matrices
A ∈ IR

n×n and interval right-hand side vectors b ∈ IR
n. The interval system

is understood as a family of point linear systems Ax = b with A ∈ A and
b ∈ b. The solution set of the interval linear system is defined as the set
Ξ(A, b) =

{
x ∈ Rn | (∃A ∈ A)(∃ b ∈ b)(Ax = b )

}
, formed by solutions to

all the point systems Ax = b with A ∈ A and b ∈ b. We are interested in the
optimal enclosure of the solution set to the interval linear system, i.e. the least
inclusive interval vector that contains the solution set.

For the solution of the above problem, we use the parameter partitioning
methods or, shortly, PPS-methods developed in [1, 2]. The essence of PPS-
methods is sequential refining the estimates of the solution set through adaptive
partitioning of the interval parameters of the system under solution.

The purpose of the present work was to compare various implementations
of PPS-methods that use

1) Rohn’s technique for eliminating unpromising vertex combinations;

2) estimate monotonicity test, with respect to the components of the matrix
and the right-hand side vector of the system;

3) various enclosure methods for interval linear systems;

4) various ways of processing the so-called working list, in which the results
of the partition of the interval linear system are stored.

Special attention is paid to the modification based on Rohn’s technique, which
is the most complex, laborious, but the most efficient one for the systems of
moderate dimensions.
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J. Rohn revealed that, if the matrix A is regular, then both minimal and
maximal component-wise values of the points from the solution set are at-
tained at the set of no more than 2n so-called extreme solutions to the equation
|(midA)x − mid b| = radA · |x| + radb [3]. Our INTLAB code linppse [4]
implements a modification of the general PPS-methods based on this result [2].
We have carried out numerical tests and examined the efficiency of the algorithm
depending on the properties of the interval matrix of the system.

Also, we have investigated various versions of PPS-methods, which used,
as procedures for computing basic enclosures, Krawczyk method, modified
Krawczyk method with epsilon-inflation, interval Gauss method, interval Gauss-
Seidel iteration, Hansen-Bliek-Rohn procedure, verifylss procedure from the
toolbox INTLAB. Experimental results demonstrated that, amongst the above
listed techniques, Hansen-Bliek-Rohn procedure with preliminary precondition-
ing is the best enclosure for PPS-methods.

Based on numerical experiments, we elaborate practical recommendations
on how to optimize, within the PPS-methods, processing the working list (of
“systems-descendants”). Finally, we present the results of comparisons between
two computer codes for computing optimal enclosures of the solution set to
interval linear systems, namely, our linppse [4] and verintervalhull from
Rohn’s VERSOFT package [5].
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In this talk, we are concerned with the accuracy of numerically computed
results for solutions in least squares problems

min
x∈Rn

‖b−Ax‖2, A ∈ R
m×n, b ∈ R

m, (1)

and minimal 2-norm solutions in underdetermined systems

Ax = b, A ∈ R
n×m, b ∈ R

n, (2)

where m ≥ n and A has full rank. The problems (1) and (2) arise in many ap-
plications of scientific computations, e.g. linear and nonlinear programming [1],
statistical analysis, signal processing, computer vision [2] and so forth. It is well
known (e.g. [3,4]) that the solutions in (1) and (2) can be written as A+b, where
A+ denotes the pseudo-inverse of A.

We consider in this talk numerically enclosing A+b, specifically, computing
error bounds for x̃ using floating point operations, where x̃ denotes a numerical
result for A+b. It is well known (e.g. [4]) that A+b in (1) and (2) can be
computed by solving the augmented linear systems

(
A −Im
On AT

)(
x
w

)
=

(
b
0

)
and

(
AT −Im
On A

)(
w
x

)
=

(
0
b

)
, (3)

respectively, where Im and On denote the m×m identity matrix and the n×n
zero matrix, respectively, since these systems imply x = A+b. The INTLAB
[5] function verifylss encloses A+b in (1) and (2) by enclosing solutions in
(3), supplies componentwise error bounds, and requires O((m+n)3) operations.
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The VERSOFT [6] routine verlsq returns the enclosure of A+b in (1) and (2)
by computing an interval matrix including A+ and gives componentwise error
bounds. The author [7] has proposed algorithms for enclosing A+b in (2), which
gives normwise error bounds. In this algorithm, (3) is not utilized, i.e. (2)
is directly considered, so that the computational cost of this algorithm is not
O((m + n)3) but O(m2n) operations. Recently Rump [8] proposed fast algo-
rithms for enclosing A+b in (1) and (2), which return normwise error bounds.

The purpose of this talk is to propose algorithms for enclosing A+b in (1) and
(2) which supply componentwise error bounds and are as fast as the algorithms
in [8]. These algorithms do not assume but prove A to have full rank. We
prove that the obtained error bounds by the proposed algorithms are equal or
smaller than those by the algorithms in [8], and finally compare the proposed
algorithms with verifylss, verlsq and the algorithms in [7,8] through some
numerical results.
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A matrix factorization having great importance in numerical linear algebra
is the singular value decomposition (SVD) (e.g. [1]), which is based on the
following theorem:

Theorem 1 Let A ∈ Rm×n be given and q := min(m,n). There exist orthogo-
nal U ∈ Rm×m and V ∈ Rn×n such that

UTAV = Σ = diag(σ1, . . . , σq),

σ1 ≥ · · · ≥ σr∗ > σr∗+1 = · · · = σq = 0, r∗ = rank(A).

The nonnegative real numbers σi, i = 1, . . . , q are called the singular values of
A, which play important roles in application areas. It is well known that σ2

i are
the eigenvalues of the symmetric pencils ATA− λIn and AAT − λIm, where In
denotes the n× n identity matrix.

Van Loan [2] generalized the SVD. This generalization is called the general-
ized singular value decomposition (GSVD) and based on the following theorem:

Theorem 2 Let A ∈ Rm×n with m ≥ n and B ∈ Rp×n be given and q :=
min(p, n). There exist orthogonal U ∈ Rm×m and V ∈ Rp×p and a nonsingular
X ∈ Rn×n such that

UTAX = ΣA = diag(c1, . . . , cn), V TBX = ΣB = diag(s1, . . . , sq),

0 ≤ c1 ≤ · · · ≤ cn ≤ 1, 1 ≥ s1 ≥ · · · ≥ sr∗ > sr∗+1 = · · · = sq = 0,

r∗ = rank(B), c2i + s2i = 1, i = 1, . . . , q.

The quotients µj = cj/sj, j = 1, . . . , r∗ are called the generalized singular
values of A and B. Note that µ2

j are the eigenvalues of the symmetric pencil

ATA− λBTB. Although more general definition of the GSVD can be found in
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[3], in this talk, we define the GSVD by Theorem 2 for simplicity. The GSVD
is a tool used in many applications, such as damped least squares, least squares
with equality constraints, certain generalized eigenvalue problems and weighted
least squares [2].

In this talk, we consider computing verified bounds of all the singular values
and generalized singular values. For the singular values, Oishi [4] first proposed
such an algorithm utilizing numerical full SVD. Recently Rump [5] proposed
a fast algorithm which utilizes not the full SVD but the eigen-decomposition.
The VERSOFT [6] routine versingval encloses all the singular values utilizing
an augmented matrix. For the generalized singular values, an algorithm for
computing verified bounds of cj , sj and j-th columns of U , V and X for specified
j ∈ {1, . . . , r∗} has been proposed in [7]. As long as the author know, on the
other hand, an algorithm giving verified bounds of µj for all j = 1, . . . , r∗ has
not been known.

The purpose of this talk is to propose algorithms for computing verified
bounds of all the singular values or generalized singular values. For the singular
values, we propose an algorithm which is faster than the algorithms in [4,5] and
versingval. We extend this algorithm to the generalized singular values and
propose two algorithms. The first and second algorithms are applicable if BTB
and ATA are nonsingular, respectively. We do not assume but prove these
nonsingularities during the executions of these algorithms. Numerical results
show the properties of the proposed algorithms.
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In information support of science, an important point is organization of
regular meetings and discussions of researchers working in specific fields. In
particular, this is critical for scientific computing, computer arithmetic, and
verified numerical methods, where one should have assess to the achievements,
to see trends and to predict the prospects of this area of knowledge. That is
the purpose of the current 15’th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Verified Numerical Computa-
tions, which will be held in Novosibirsk on September 23–29, 2012.

The events, such as SCAN’2012, are preceded by a large amount of prepara-
tory work performed by the organizers proper and many other people [1, 2].
The first step is to initiate the conference, formulate its goals and objectives, its
scope, determine its time and venue, form an organization team. The compe-
tence of the program committee is to identify the “content” of the conference,
the specificity of the submissions to be presented and discussed. These commit-
tees are responsible for the overall success of the conference.

The purpose of the second stage is the notification of all potentially inter-
ested individuals and organizations about the forthcoming conference, its scope,
venue, format and dates, conditions of participation. To do this, the organiz-
ers use a wide range of various means: putting the information onto electronic
bulletin boards devoted to the relevant topics, direct mailing, printing and dis-
tributing leaflets, etc. At this stage, the availability of information plays a
crucial role, so that it becomes necessary to maintain a web-site of the confer-
ences that publishes and updated promptly all the information, including news
and ads (in our case, this is http://conf.nsc.ru/scan2012).

At the next stage, the organizers analyze and process the input information.
In its flow, two major components can be identified: applications from potential
participants, and abstracts of the submissions. A preliminary qualitative and
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quantitative assessments is made in order to determine a general outline of the
forthcoming meeting. The place of each submitted abstract within the program
of the meeting is determined.

At the beginning of the fourth stage, after the pre-appointed time elapses,
the organizers stop receiving abstracts and turn to their analysis. Peer-reviewing
of the submissions is usually performed by a Program Committee, consisting of
experts in the field, that evaluate the submissions according to several criteria:
originality of the results, the quality of presentation, relevance of the work, and
others. Often, within the overall scope of the conference, there exist several
different branches, and the corresponding submissions are to be presented and
discussed separately. It is the task of the program committee to co-ordinate such
branches and conduct the overall scientific policy. As the result of this stage,
a pool of accepted submissions is formed that can be a basis for compiling a
preliminary working program of the meeting. At the end of the fourth stage, a
preliminary program of the meeting is prepared as well as the overall activity
plan, which are published on the conference website. Also, the organizing com-
mittee makes and prints the volume of abstracts to be distributed among the
conference participants during the on-desk registration.

The main part of the conference begins with registration of the arrived par-
ticipants. The organizers should be aware in advance of their intention to stay
in hotels of a class and provide the opportunity. At this stage, a large number of
various problems may occur. Much of them should be predicted and prevented
at the preparatory stages, although they cannot be totally eliminated.

After completion of the main stage, the final part of the scientific meeting
comes, when the organizers should summarize the overall results of the confer-
ence and make them publicly available for future use. This traditionally amounts
to publication of the conference proceedings, either in paper or electronic form.
For SCAN’2012, the proceedings will be published in the open electronic journal
Reliable Computing [3].
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Several approximations occur during a numerical simulation : physical phe-
nomena are modelled using mathematical equations, continuous functions are
replaced by discretized ones and real numbers are replaced by finite-precision
representations (floating-point numbers). The use of the IEEE-754 arithmetic
generates round-off errors at each elementary arithmetic operation. By accu-
mulation, these errors can affect the accuracy of computed results, possibly
leading to partial or total inaccuracy. The effect of these rounding errors can be
analyzed and studied by some methods like forward/backward analysis, inter-
val arithmetic or stochastic arithmetic (which is implemented in the CADNA
validation tool).

A numerical verification of industrial codes, such those that are developed at
EDF R&D –the French provider of electricity–, is required to estimate the pre-
cision and the quality of computed results, even more for code running in HPC
environments where millions instructions are performed each second. These
programs usually use external libraries (MPI, BLACS, BLAS, LAPACK) [1].
In this context, it is required to have a tool as nonintrusive as possible to avoid
rewriting the original code. In this regard, the CADNA library appears to be
one of the promising approach for industrial applications.

The CADNA library, developed by the Laboratoire d’Informatique de Paris
6, enables us to estimate round-off error propagation using a probabilistic ap-
proach in any simulation program (written in C/C++ or Fortran) and to con-
trol its numerical quality by detecting numerical instabilities that may occur
at run time [2]. CADNA implements Discrete Stochastic Arithmetic which is
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based on a probabilistic model of round-off errors (this arithmetic is defined
with the CESTAC Method). CADNA provides new numerical types, the so-
called stochastic types, on which round-off errors can be estimated. However, a
problem remains: stochastic types are not compatible with the aforementioned
libraries. It is, therefore, necessary to develop some extensions for these external
libraries.

We are interested in an efficient implementation of the BLAS routine xGEMM
compatible with CADNA. We have called this new routine DgemmCADNA. The
BLAS (Basic Linear Algebra Subprograms) are routines that provide standard
building blocks for performing basic vector and matrix operations and xGEMM
is the routine which goal is to perform matrix multiplication [5]. The implemen-
tation of a basic algorithm for matrix product compatible with stochastic types
leads to an overhead greater than 1000 for a matrix of 1024*1024 compared to
the standard version and commercial versions of xGEMM. This overhead is due
to the use of stochastic types, the rounding mode which changes randomly at
each elementary operation (×, /,+,−), and a non optimized use of the memory
(cache and TLB misses).

We will present different solutions to reduce this overhead and the results
we have obtained. In order to improve the hierarchical memory usage, special
data structures (Block Data Layout) are used. This allows us to improve the
memory performance to reduce cache and TLB misses. A new implementation of
CESTAC Method has been introduced to reduce the overhead due to the random
rounding mode. Finally, we have obtained an overhead about 25 compared to
GotoBLAS in a sequential mode.

We will also present, briefly, new extensions for CADNA : CADNA MPI
and CADNA BLACS which allow to use stochastic data in programs using the
communications standard routines (MPI or BLACS).
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This talk discusses a verification method for linear systems:

Ax = b

where A is a real n× n dense matrix and b is a real n-vector. The verification
method means a method which outputs an error bound between a numerical
solution and an exact solution by floating-point computations. The aim of this
talk is to propose a verification method for linear systems suited for a GPU.

The GPU is used for not only acceleration of building of images but also
for numerical computations since the computational performance is very high.
Recently, useful toolboxes and libraries for GPGPU (General-Purpose Computa-
tion on Graphics Processing Unit) have been developed, for example, MATLAB
Parallel Computing Toolbox, JACKET, MAGMA and so forth.

Several verification methods for linear systems have been developed for a
dense coefficient matrix [1, 2, 3]. Many verification methods require switches
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of rounding modes defined by the IEEE 754 standard [4]. However, since the
GPU (Graphics Processing Unit) does not have no dynamically configurable
rounding mode [5], the methods of [1, 3] cannot be implemented on the GPU
straightforwardly. To overcome the problems, we first improved Ogita-Rump-
Oishi’s error estimation [2] by using new floating-point error estimations by
Rump [6]. Our algorithm does not switch rounding modes, namely, it works
only in default rounding mode on GPGPU (rounding to nearest).

Next, an amount of device (GPU) memory is little compared to that of host
(CPU) memory in many cases. For example, Tesla C2070 by NVIDIA Corpo-
ration has 6 Gbytes memory although CPU has much more working memory
(recently, amount of memory installed for a CPU can be over 48 Gbytes). There-
fore, we apply blockwise computations to reduce the amount of working memory
of GPU. Data transfer of block matrices from CPU to GPU and from GPU to
CPU is required for blockwise computations and its transfer speed is slow due
to low bandwidth. However, numerical results illustrate that computational
times using blockwise computation are only 10.7 percent slower than that by
using no blockwise computation. Therefore, blockwise computation does not
significantly slow down the computational performance. The error bound by
our algorithm is twice or three times better than that by [2].
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Floating-point arithmetic [1] has become ubiquitous in the specification and
implementation of programs, including those targeted at embedded systems.
However, for the sake of chip area or power consumption constraints, some of
these embedded systems are still shipped with no floating-point unit. In this
case, only integer arithmetic is available at the hardware level. Hence, to run
floating-point programs, we need either to use a library that emulates floating-
point arithmetic in software (such as the FLIP∗ library), or to rewrite the pro-
grams to rely on fixed-point arithmetic [2]. Both approaches require the design
of fixed-point routines, which appears to be a tedious and error prone task,
especially since it is partly done by hand. Thus, one of the current challenges
is to design automatic tools to generate fixed-point programs as fast as possible
while satisfying some accuracy constraints. In this sense, we have developed
the CGPE† software tool, dedicated to the generation of fast and certified codes
for evaluating bivariate polynomials in fixed-point arithmetic. This tool, based
on the generation of several fast evaluation codes combined with a systematic
numerical verification step, is well suited for VLIW integer processors using only
binary adders and multipliers. We propose here an extension of CGPE, which
consists in adding a step based on instruction selection [4, §8.9] to improve the
speed and the accuracy of the generated codes for more advanced architectures.

Given an instruction set architecture, instruction selection is the compilation
process that aims at finding a sequence of instructions implementing “at best”
a given program. It works on a target-independent intermediate representation
of this program, represented as a tree or a directly acyclic graph (DAG), and

∗Floating-point Library for Integer Processors (see http://flip.gforge.inria.fr).
†Code Generation for Polynomial Evaluation (see http://cgpe.gforge.inria.fr and [3]).
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is usually used to optimize the code size or latency on the target architecture,
while no guarantee is provided concerning the accuracy of the generated code.
The general problem of instruction selection has been well studied and, even
though it has been proven to be NP-complete even for simple machines in the
case of DAGs [5], several algorithms exist to tackle this problem (see [5] and the
references therein).

In the context of CGPE, where we represent polynomial evaluation expres-
sions with DAGs, we can benefit from this work on instruction selection by
combining it with the numerical verification step already implemented. The in-
terest of our new approach is twofold. First it is much more flexible than writing
a generation algorithm for each available processor. Indeed, it mainly needs to
work on the DAG representation of the expression to be implemented, which
is independent of the target architecture, and thus it makes easier to handle
various architectures shipping different kind of instructions. Second it allows
us to generate automatically codes optimized for a given target and satisfying
various criteria like accuracy and performance, as well as code size or number
of operators. This approach has been validated on the evaluation of polyno-
mials, where it allows us to write efficient codes using at best some advanced
architecture features such as the presence of a fused-multiply-add operator.
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JInterval [1] was started in 2008 as a research project to develop a Java
library for interval computations. The library is intended mainly for developers
who create Java-based applied software. The design of the JInterval library
was guided by the following requirements ordered by descending priority:

1. The library must be clear and easy to use. No matter how wonderful
a software tool is, it will be hardly accepted by developers if it is not transparent
and easy to use.

2. The library should provide flexibility in the choice of interval arithmetic

for computations. The user must be able to choose interval arithmetic (classi-
cal, Kaucher, complex rectangular, complex circular, etc.) and to switch one
arithmetic to another if they are compatible. Syntactic differences between the
use of this or that arithmetic should be minimized.

3. The library should provide flexibility in extending its functionality. The
library must be layered functionally. Four layers should be defined: interval
arithmetic operators, elementary interval functions, interval vector and matrix
operations, and, finally, high-level interval methods, such as solvers of equa-
tions, optimization procedures, etc. Architecture of the library must allow for
extensions at every layer, starting from the bottom one.

4. The library should provide flexibility in choosing precision of interval

endpoints and associated rounding policies. The choice of interval endpoints
representation and the rounding mode could allow the user to tune accuracy
and speed of computation depending on the problem he solves.

5. The library must be portable. Cross-platform portability of the library
is one of its major strengths, being a key distinction over its closest competi-
tors. To a large extent, this requirement is ensured by the choice of the Java
technology built on the principle ”write once, run anywhere”. However, the
design must adhere to certain restrictions on practical implementation of this
requirement.
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6. The library should provide high performance. In the era of multicore and
multiprocessor systems, a prerequisite for high performance is the ability to use
the library safely in a multithreaded environment.

Achieving the required flexibility leads to widening the scope of the library,
which results in a vast and obscure design, contrary to the simplicity require-
ment. To avoid this contradiction, and to preserve clarity of the library, the
overall architecture needs to be transparent and consistent. This is done due to
appropriate design decisions. Methods for interval classes, regardless of interval
arithmetic and of the internal representation of intervals are unified. Inter-
vals are considered as immutable objects. The user is provided with a simple
interface to manage rounding policy and interval endpoints representation.

At the moment, JInterval provides a user with several interval arithmetics
(classical real, extended Kaucher, complex rectangular, complex circular, com-
plex sector, complex ring), interval elementary functions, interval vector and
matrix operations, as well as a few methods for inner and outer estimation of
the solution sets to interval linear systems.

A number of applications have been built using JInterval library. A
collection of plugins is developed for the data mining platform KNIME. The
collection include interval regression builder, outlier detector, ILS solver, etc.
Another example is mobile applications, where JInterval is used for position
uncertainty modeling in hybrid navigation.

The experience of JInterval implementation and usage taught us several
lessons, and further development of JInterval will be governed by the following
principles:

1. Java language has a lot of advantages, but its syntax is not expressive
enough for computational programming. Scala language (fully compliant with
JVM) is considered as a basic language for a new JInterval implementation.

2. Presently, JInterval is not compliant with the project of interval arith-
metic standard IEEE P1788. A new implementation will be adjusted for P1788.

3. To achieve high performance, JInterval will be equipped (using Java
Native Interface) with optional plugins for machine-dependent implementation
of high precision arithmetic and interval linear algebra algorithms.

4. For applied software developers, a rich content of the fourth layer of
the library (high-level interval analysis methods) is one of the most valuable
issues. Therefore the replenishment of JInterval with solvers of algebraic and
differential equations, interval optimizers, etc., remains the foreground task.
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Verified integration methods for ODEs are methods that compute rigorous
bounds for some specific solution or for the flow of some initial set of a given
ODE. For almost fifty years, interval arithmetic has been used for calculating
bounds for solutions of initial value problems. The origin of these methods dates
back to Moore [5]. The most well-known interval method is the QR method due
to Lohner [2], implemented in the AWA software package.

Unfortunately, interval methods sometimes suffer from overestimation. Pes-
simistic bounds are caused by the dependency problem, that is the lack of
interval arithmetic to identify different occurrences of the same variable, and by
the wrapping effect, which occurs when intermediate results of a calculation are
enclosed into intervals.

Overestimation is a particular concern in the verified solution of initial value
problems for ODEs. While it may sometimes be possible to reduce dependency
by skillful reformulation of the given equations or by evaluating all function
expressions by centered forms, the wrapping effect is more difficult to prevent.
Interval methods usually compute enclosures of the flow at intermediate time
steps of the integration domain. When the flow is a nonconvex set and is
bounded by some convex interval, overestimation is inevitable.

For improving bounds, Taylor models have been developed as a combination
of symbolic and interval computations by Berz and his group since the 1990s.
In Taylor model methods, the basic data type is not a single interval, but a
Taylor model U := pn + i consisting of a multivariate polynomial pn of order n
and some remainder interval i. In computations that involve U , the polynomial
part is propagated by symbolic calculations where possible, and is thus hardly
affected by the dependency problem or the wrapping effect. Only the interval
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remainder term and polynomial terms of order higher than n, which are usually
small, are bounded using interval arithmetic.

Besides reducing dependency, Taylor model methods for ODEs also benefit
from their capability to represent non-convex sets. This is an intrinsic advantage
over interval methods for enclosing the flows of nonlinear ODEs, especially in
combination with large initial sets or with large integration domains [1, 3, 4, 6].

In our talk, we analyze Taylor model methods for the verified integration of
ODEs and compare these methods with interval methods.
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A multi-criteria linear programming problem (MLP) is one of the classical
problem statements in the theory of decision making, and its formulation has
the form:

Cx→ max
x∈X

, X = { x ∈ R
n | Ax ≤ b, x ≥ 0}. (1)

Here, in contrast to the usual linear programming problem (LP), C is a
matrix with the dimension l × n, and not a vector, A is a constraint matrix
with the dimension m × n. Thus, the multi-criteria problem (1) involves the
maximization, on a polyhedron, l linear criteria at the same time, as distinct
from the ordinary LP problem. Note that the normal form of (1) can be eas-
ily transformed to the canonical from. The constraint x ≥ 0 is also easy to
implement.

As a rule, the traditional solution of the problem (1) does not exist, that is,
the point x ∈ X , such that Cx ≥ Cy for all y ∈ X and y 6= x, is absent. In the
case where the decision maker (DM) does not have a priori information on the
relative importance of various criteria, the solution of (1) is understood as the
so-called Pareto set. Denote it as N ⊂ X . The solution x ∈ N is called Pareto
solution (non-dominated, unimprovable), if it can not be improved with respect
to any criterion without worsening the value of at least one of the remaining
criterion. Or, formally,

x ∈ N ⇐⇒ (∀y ∈ X, y 6= x)¬((Cy ≥ Cx) ∧ (∃i Ciy > Cix)),

where Ci is the i-th row (i-th criterion) of the matrix C.
The problem of constructing the Pareto set in the MLP problem has been

extensively covered in the literature, and one of the best publications on the
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subject is the article of P.L. Yu and M. Zeleny [1]. They have derived and the-
oretically substantiated a number of methods for constructing Pareto sets of
vertices Nex ⊂ N and the whole Pareto set. In particular, the so-called multi-
criteria simplex method is developed in [1] for the construction of the set Nex.
It is based on a fundamental theorem whose formulation is given below.

Theorem [1]. The set Nex is connected, x0 ∈ N ⇔ ω = 0; x0 ∈ D ⇔ ω > 0.
Here, D = X\N , and ω is a solution of the LP problem

ω = max

l∑

i=1

ei, X̃ = { (x, l) ∈ R
n+l | x ∈ X, Cx− e ≥ Cx0, e ≥ 0}. (2)

The essence of the algorithm for constructing the set Nex that is described
in [1], is as follows. We start from searching the first Pareto vertex x1. To do
this, it is sufficient to solve the LP problem with the objective function

l∑

i=1

λiC
ix→ max

x∈X
, λ > 0.

After that, all the neighbouring vertices for point x1 are being checked to be
Pareto ones by solving the problem (2). Those who really prove to be Pareto
vertices, are included in Nex, then we test their adjacent vertices, etc.

It should be noted that in [1] shows (see, for example, Theorem 3.1 in [1]), a
set of simple sufficient conditions for belonging to some arbitrary point y ∈ X
set D, which greatly facilitates the search. Note that in [2] is a simple way to
spot the characterization of the Pareto set N .

We now pose the problem (1) somewhat differently, namely, we assume that
both the constraint matrix, right-hand side and the criterion matrix are interval
(the scalar formulation has long been solved by various approaches). The above
raises a number of natural questions. Is the problem formulation correct? If so,
what is meant by Pareto solution and Pareto vertex in this case? What will be
multi-criteria simplex method? And a number of extremely interesting related
questions.
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To solve linear systems is ubiquitous since it is one of the basic and significant
tasks in scientific computing. Floating-point arithmetic is widely used for this
purpose. Since it uses finite precision arithmetic and numbers, rounding errors
are included in computed results. To guarantee the accuracy of the results,
there are methods so-called verified numerical computations based on interval
arithmetic. Excellent overviews can be found in [6] and references cited therein.

Let A be a real n × n matrix, and b a real n-vector. Let κ(A) = ‖A‖2 ·
‖A−1‖2 be the condition number of A, where ‖ ·‖2 stands for the spectral norm.
Throughout the talk we assume for simplicity that IEEE standard 754 binary64
(formerly, double precision) floating-point arithmetic is used. Let u denote the
rounding error unit of floating-point arithmetic, which is equal to 2−53.

We are concerned with practically proving the nonsingularity of A (if A
is nonsingular) and then obtaining a forward error bound of an approximate
solution x̃ of a linear system Ax = b to the exact solution x∗ = A−1b such that
|x∗i − x̃i| ≤ ǫi for 1 ≤ i ≤ n by the use of verified numerical computations. For
this purpose estimating ‖A−1‖ is essential for some matrix norm.

For dense linear systems there are several efficient methods for this purpose
(e.g. [1,4]). For sparse systems things are much different; Fast and efficient
verification for large sparse linear systems is still difficult in terms of both com-
putational complexity and memory requirements except a few cases where it
is known in advance or to be proved that A belongs to a certain special ma-
trix class, e.g. diagonally dominant and M -matrix (see, e.g. [3]). Moreover, a
super-fast verification method proposed in [7] is applied to the case where A is
sparse, symmetric and positive definite. However, to our knowledge, few meth-
ods are known in case of A being a general sparse matrix except methods by
Rump [5]. Thus the verification for sparse systems of linear (interval) equa-
tions is known as one of the important open problems posed by Neumaier in
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Grand Challenges and Scientific Standards in Interval Analysis [2]. Moreover,
Rump [6] formulated the following challenge:

Derive a verification algorithm which computes an inclusion of the
solution of a linear system with a general symmetric sparse matrix
of dimension 10000 with condition number 1010 in IEEE 754 double
precision, and which is no more than 10 times slower than the best
numerical algorithm for that problem.

In the present talk we try to partially solve the problem for symmetric but
not necessarily positive definite input matrices, and also to a certain extent for
nonsymmetric matrices. Namely, we assume that A is large, e.g. n ≥ 10000,
and sparse, possibly κ(A) > 1/

√
u.

We survey some existing verification methods for sparse linear systems. After
that, we propose new verification methods. Numerical results are also presented.
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The Sinc quadrature has been known as an efficient numerical integration

formula for definite integrals,
∫ b

a f(x) dx, if the following conditions are met: (i)
(a, b) = (−∞, ∞), and (ii) |f(x)| decays exponentially as x → ±∞. In other
cases, users should employ an appropriate variable transformation x = ψ(t),

i.e., the given integral is transformed as
∫ b

a f(x) dx =
∫∞
−∞ f(ψ(t))ψ′(t)dt, so

that those two conditions are met. Stenger [2] considered the following cases:

1. (a, b) = (−∞, ∞), and |f(x)| decays algebraically as x→ ±∞,
2. (a, b) = (0, ∞), and |f(x)| decays algebraically as x→∞,
3. (a, b) = (0, ∞), and |f(x)| decays (already) exponentially as x→∞,
4. The interval (a, b) is finite,

and gave the concrete transformations for each case:

ψSE1(t) = sinh(t),

ψSE2(t) = et,

ψSE3(t) = arcsinh(et),

ψSE4(t) =
b− a

2
tanh(t/2) +

b+ a

2
,

which are called the Single-Exponential (SE) transformations. Takahasi–Mori [3]
have proposed the following improved transformations:

ψDE1(t) = sinh[(π/2) sinh t],

ψDE2(t) = e(π/2) sinh t,

ψDE3(t) = et−exp(−t),

ψDE4(t) =
b− a

2
tanh(π sinh(t)/2) +

b+ a

2
,
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which are called the Double-Exponential (DE) transformations. Error analyses
of them have been given [2,4] in the following form:

|Error(SE)| ≤ Ce−
√
2πdαN , |Error(DE)| ≤ Ce−πdN/ log(8dN/α),

where α denotes the decay rate of the integrand, and d indicates the width of
the domain in which the transformed integrand is analytic, and C is a constant
independent of N . In view of the inequalities, we notice that the accuracy of
the approximation can be guaranteed if the constant C is explicitly given in
a computable form. In fact, the explicit form of C has been revealed in the
case 4 (the interval is finite) [1], and the result was used for verified automatic
integration [5].

The purpose of this study is to reveal the explicit form of C’s in the remain-
ing cases: 1–3 (the interval is infinite), which enables us to bound the errors.
Numerical experiments that confirm the results will be shown in this talk.

In addition to the Sinc quadrature described above, the similar results can

be given for the Sinc indefinite integration for indefinite integrals
∫ ξ

a
f(x) dx,

which will also be reported in this talk. For this (indefinite) case, a new variable
transformation ψDE3‡(t) = log(1+eπ sinh t) is proposed for the DE transformation
in the case 3, so that its inverse can be written with elementary functions.
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We consider methodological issues of the usage of interval analysis as a
method for mathematical modeling of real-world processes and experimental
data processing.

Let for a process described by a linear dependence y = xβ∗ with output
variable y ∈ R, input variables x ∈ Rp and unknown true values of parame-
ters β∗ ∈ Rp, we have a set of interval observations {(Yj,Xj) | j = 1, . . . , N}.
The problem of estimation of the process parameters is reduced to finding the
united solution set B(N) of the interval linear system Y = XB. The set of pos-
sible parameters values B(N) is also called the information set. If underlying
assumptions about the structure of dependence and validity of interval observa-
tions are strongly fulfiled, the inclusion β∗ ∈ B(N) 6= ∅ holds. This inclusion is
a fundamental foundation of reliability of the constructed parameters estimates.

This interval approach to modeling of processes is developed by a number
of authors and competes with probabilistic approach on efficiency of estimates
in a number of applications. Using the interval approach benefits the simplicity
and reliability of data and knowledge, flexibility in employment of a priori infor-
mation, possibility of state estimation, forecasting and choosing control actions
for a modeled process. There are applications of the interval approach to the
modeling of nonlinear processes and processes with an inner noise.

Essential difficulties arise in a case when we are not sure about the underlying
assumptions of the method, and hence there is no good cause to state β∗ ∈ B(N)
even if B(N) 6= ∅. The fulfilment of assumptions cannot be verified using only
existing data and knowledge. An analogous problem situation often takes place
when statistical probabilistic methods are used for data analysis.

When looking for a way out of the situation, it is necessary to take into
account the following principles.
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1. It is impossible to obtain reliable estimates of process parameters using
an inconsistent set of data and knowledge about the process.

2. None of the inner mathematical needs can be a ground for any kind of
modifications of analyzed data and knowledge.

In the authors’ opinion, the methodologically correct way out of the impasse
involves a discovering of inconsistencies in the data and knowledge and their
elimination after appraisal by application domain experts.

The proposed way is implemented in a case when B(N) = ∅ [1–3]. Widening
of some or, in general, all interval variables allows us to obtain an information
set B(N, k) ⊃ B(N) which is determined by a set k of expansion coefficients
for interval variables. The expanded set B(N, k) is formed by elementary infor-
mation portions Bj(N, k), B(N, k) = ∩Nj=1Bj(N, k). Choosing k we can obtain
B(N, k) 6= ∅ and detect portions which need domain expert’s appraisal.

Besides, to discover inconsistencies one can

• estimate an informational value of each portion of data and knowledge
against the selected basic set;

• relate the volume of B(N, k) to the value of N ;

• investigate the dynamics of the volume of B(N, k) depending on N .

Implementation of the proposed approach demands on the development of
suitable mathematical tools and accumulation of experience in specific applica-
tions. We show model and real-world case studies to illustrate the approach.

The authors wish to express their gratitude to Professor S.P. Shary for his
initiative to prepare this talk.
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This talk discusses accurate numerical algorithms for matrix multiplication.
Accurate matrix multiplication is useful for verified numerical computations,
especially for verified solutions of systems of equations including proofs of matrix
non-singularity and Krawczyk’s method (See, for example, Chapter 4 in [1],
Section 4 in [2] and Section 10 in [5]). Let A be an m-by-n matrix and B be
an n-by-p matrix with floating-point entries as defined by the IEEE 754-2008
standard, respectively. If the matrix multiplication AB is evaluated by floating-
point arithmetic, then an inaccurate result may be obtained due to accumulation
of rounding errors. The aim is to develop an algorithm outputting a computed
result C such that

|C −AB| ≤ u|AB|, (1)

where u is the relative rounding error unit, for example, u = 2−53 for binary64.
The inequality implies that C is as accurate as if AB were first evaluated exactly
and the results were rounded to the nearest floating-point numbers component-
wise. To achieve (1), a simple way is to apply an accurate summation algorithm,
such as the algorithm proposed by Rump-Ogita-Oishi in [3], for each dot prod-
uct in matrix multiplication since a dot product can be transformed into a
sum of 2n floating-point numbers by so-called error-free transformations. The
above-mentioned algorithm is called Algorithm-A in this abstract.

Recently, an error-free transformation of matrix multiplication [4] is devel-
oped by the authors. It transforms a product of two floating-point matrices into
an unevaluated sum of floating-point matrices, namely

AB =

q∑

i=1

C(i), q ∈ N,
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where each C(i) is anm-by-p floating-point matrix. By using this transformation
and the accurate summation algorithm given in [3], it is possible to develop an
algorithm which achieves (1). Namely, the error-free transformation is first
applied. Next, the accurate summation algorithm [3] is applied to the sum of
matrices componentwise. The above-mentioned algorithm is called Algorithm-B
in this abstract.

First, we compare computational performance and efficiency of paralleliza-
tion of the two algorithms by numerical examples. If there is not much difference
in the order of magnitude among elements in the same row of A and those in
the same column of B, then Algorithm-B is much faster than Algorithm-A.
Otherwise, Algorithm-A is faster than Algorithm-B.

A drawback of Algorithm-B is to require a large amount of working mem-
ory. To overcome this problem, we develop a new algorithm which reduces the
amount of working memory by block matrix computations and reuse of work-
ing memory. We incorporate these approaches into Algorithm-B. The proposed
algorithm is called Algorithm-C in this abstract. It is shown by numerical ex-
amples that such approaches for saving working memory are efficient and do
not slow down the computational performance significantly. For example, if
the required working memory for Algorithm-C is reduced into 1/5 of that for
Algorithm-B, then Algorithm-C is only 20 % slower than Algorithm-B in the
numerical examples.
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This work is devoted to the interval methods for the solution of uncon-
strained global optimization problems. Use of interval analysis as a base com-
ponent of the methods gives essential advantages (e.g., less requirements to the
problem statement [1]).

Method of range dichotomy and cutoff methods use the approach previously
elaborated in [4]. The feature of our technique is that it does not use subdivision
of the function domain, and only divided the range of values. According to the
terminology from [4], all the components of the domain are “mute” in this
case. Our methods use a construction called invertor that requires, on input,
the objective function, a target interval, a box and an accuracy parameter. The
invertor returns a set of boxes on which the objective function returns an interval
which belongs to the target interval or has non-empty intersection with it (in
this case, the width of the box must satisfy an accuracy constraint).

On the first step of the method of range dichotomy, we evaluate the range of
the function over the search area and consider it as the target interval. Further
on each iteration the target interval is bisected. Then we apply the invertor to
the first part. If the invertor returns a nonempty set, we check the accuracy
condition. In case of its failure, the first part is considered as a new target
interval, and a new iteration of the method starts. Otherwise, the returned set
has a box that contains the global minima of function. If the invertor returns
an empty set, the second part is considered as a new target interval, and the
method begins new iteration.

Strategies for the cutoff methods are similar to the strategy for the range
dichotomy method. The only distinction is the presence of a tightening stage,
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which comes before the iterative part. After the range evaluation, we apply
the operator of compression to it, which deletes a part of virtual values from
the evaluation. Then the method works as the previous method. The stage
described tries to reduce the target interval. This accelerates convergence.

Strategy of the changing directions method consists of constant analysis
of the best box and all the potential best boxes stored in the memory. To
explain the work of the method, it is necessary to introduce the concept of the
double buffer. We will consider the double buffer as a set of the ordered pairs
“box”x“enclosure of the range”. One box is considered better than another,
if it has a smaller lower boundary and width of its range enclosure. On each
iteration, the best box, which becomes target box, is selected from the double
buffer. Further, the target box is divided at its midpoint. Then we evaluate the
range of newly organized boxes and restructure the double buffer. This method
works while there is at least one box in the double buffer that do not meet the
accuracy requirement.

The methods were not only theoretically substantiated and have their con-
vergence proved. Besides, they were tested on benchmarks of unconstrained
global optimization problems (global minimization of the Schwefel’s, Griewank’s,
Ackley’s functions, etc.). All the methods compute the box which contains the
point of global minima or is close enough to it according to accuracy specifica-
tion.

The methods have been implemented, using C#, as a software package that
can solve unconstrained global optimization problem and automatically analyze
the efficiency of the methods.
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For algorithmic analysis of large scale unstable problems (considered e.g.
in [1]), the library “Exact computation” [2–4] provides helpful instruments for
distributed computing environment. Further increasing of effectiveness of such
software is possible for heterogeneous computing environment that allows one
to parallelize execution of local arithmetic operations over a large number of
threads. Application of redundant positional notations is also an effective ap-
proach for increasing arithmetic algorithms scalability.
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We consider solution of the linear equations set Ax = b under interval uncer-
tainty of its elements, which can belong to the interval n×n-matrix A and inter-
val right-hand side n-vector b. That is, we only know that aij ∈ aij = [aij , aij ]

and bi ∈ bi = [bi, bi] for all i, j = 1, 2, . . . , n.
As a solution to the disturbed linear systems, we consider a point from the

tolerable solution set Ξtol(A, b) = { x ∈ Rn | (∀A ∈ A)(Ax ∈ b)}. A substantial
contribution to the theory of the tolerable solution set and tolerance problem
has been made by J. Rohn [1] and S. Shary [2].

For real-life situations, we often have Ξtol(A, b) = ∅. By parity of reasoning,
we introduce pseudo-solution concept [3] for interval linear equation systems.
Let b(z) = [ b−z|b|, b+z|b| ], z > 0, then we denote z∗ = inf{z | Ξtol(A, b(z)) 6=
∅}. Pseudo-solution of the original system Ax = b, by definition, is an inner
point of tolerable solution set Ξtol(A, b(z∗)). Extending Rohn’s representation
of the tolerable solution set [1], we deduce

Theorem 3 A solution x+
∗

, x−
∗ ∈ Rn, z∗ ∈ R to the linear programming

problem

z → min
x+, x−, z

,

n∑

j=1

(aijx
+
j − aijx−j ) ≥ bi − z|bi|, i = 1, 2, . . . , n,

n∑

j=1

(aijx
+
j − aijx−j ) ≤ bi + z|bi|, i = 1, 2, . . . , n,

x+j , x
−
j , z ≥ 0, j = 1, 2, . . . , n,

(1)
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exists, and x∗ = x+
∗ − x−

∗

is a pseudo-solution to the linear equations set
Ax = b.

Linear programming problem (1) is strongly degenerate, and solving it with
the use of the standard floating point data types is impossible, since cycling is
not efficiently eliminated by known anticycling tools under approximate com-
putations. The cycling and accuracy problems can be solved by using symbolic
rational-fractional computations [5]. To accelerate the computations, we may
avail ourselves of massively parallel computations [6].

In our talk, we discuss the solutions for a number of the above problems,
present a new theory and techniques elaborated in the course of our research.

The work is performed under support of Russian foundation for basic re-
search (project No 10-07-96003-r ural a).
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Consider linear systems A(p)x = b(p), where the elements of the matrix
and right-hand side vector are linear functions of uncertain parameters varying
within given intervals, pi ∈ [pi], i = 1, . . . , k. Such systems are common in many
engineering analysis or design problems, control engineering, robust Monte Carlo
simulations, etc., where there are complicated dependencies between the model
parameters which are uncertain. Various solution sets to a parametric linear
system can be defined depending on the way the parameters are quantified
by the existential and/or the universal quantifiers. We are interested in the
parametric AE-solution sets, which are defined by universally and existentially
quantified parameters, and the former precede the latter. For two disjoint sets
of indexes E and A, such that E ∪ A = {1, . . . , k},

Σp
AE = Σ(A(pA, pE), b(pA, pE), [p])

:= {x ∈ Rn | (∀pA ∈ [pA])(∃pE ∈ [pE ])(A(p)x = b(p))}.
Parametric AE-solution sets generalize the parametric united solution set and
the nonparametric AE-solution sets.

In this talk we present three types of characterizations for the parametric AE-
solution sets: set-theoretic characterization, characterization in form of interval
inclusions and characterization by Oettli-Prager-type absolute-value inequali-
ties. The focus of the characterizations is on how to obtain explicit description
of a parametric AE-solution set in the form of Oettli-Prager-type inequalities.
The description is explicit for some classes of parametric AE-solution sets and
in the general case can be obtained by a Fourier-Motzkin-type algorithmic pro-
cedure eliminating the existentially quantified parameters.

The characterizations of parametric AE-solution sets inspire proving various
properties of these solution sets and designing some numerical methods for their

136



outer or inner estimation. We will present some important inclusion relations
between classes of parametric AE-solution sets, where the relations are deter-
mined by the type of the parameter dependencies. Various other properties like
the shape of a parametric AE-solution set and some criteria for nonempty and
bounded solution set will be also discussed. Special consideration is provided
for the parametric tolerable solution set

Σp
tol = Σ(A(pA), b(pE), [p])

:= {x ∈ Rn | (∀pA ∈ [pA])(∃pE ∈ [pE ])(A(pA)x = b(pE))}

and for the parametric controllable solution set

Σp
cont = Σ(A(pE), b(pA), [p])

:= {x ∈ Rn | (∀pA ∈ [pA])(∃pE ∈ [pE ])(A(pE )x = b(pA))}.

Some numerical methods for outer and inner estimations of parametric AE-
solution sets will be also presented. The properties of these methods for esti-
mating the parametric tolerable and the parametric controllable solution sets
are compared. We show that in some cases the parametric approach provides
a more efficient solution for some nonparametric problems than the existing
nonparametric approaches. Numerical examples accompanied by graphic repre-
sentations will illustrate the solution sets and their properties or the numerical
methods and their properties. Some of the properties (or methods) are new,
most of them generalize known properties (or methods) for nonparametric AE-
solution sets, studied by I. Sharaya, S. Shary and others. Presenting some first
results about parametric AE-solution sets, the talk will also outline some open
problems and directions of possible further research.
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In our work, we propose a new interval approach to recognition of numerical
matrices.

The registration of data by technical means is often complicated by mea-
surement errors or noise that interfere the registration process. If it is known
that the data presented in the form of a matrix are distorted by noise or regis-
tered with errors from a given set of pattern matrices, a common problem is to
recognize the patterns under specified constraints on the noise or measurement
errors.

An obvious example of the problem under consideration is recognition of
raster images. Existing algorithms of recognition of raster images, such as, for
example, those using neural networks [1], parametric algorithms, algorithms
on the basis of the theory of morphological analysis [2] include a preliminary
learning stage, during which the algorithm should be taught from images of
the object obtained under various registration conditions. The purpose of the
learning process is to fix some characteristics of the image, which can be used
for subsequent recognition. The distinctive feature of the approach to the recog-
nition we propose in our work from the traditional ones is the absence of the
learning stage within the recognition algorithm.

The problem is formulated as follows. We are given a set of N rectangular

m × n-matrices S = {A(k)}Nk=1 whose elements a
(k)
ij are real numbers. The

matrix A is obtained from some matrix A(k0) ∈ S in the course of noising. It
is known that the values of the elements of the matrices can vary within the

intervals [a
(k)
ij −δij, a

(k)
ij +δij ], δij ∈ R+ (i = 1,m, j = 1, n). We need to identify

k0.
We associate the input matrices with the systems of interval linear equations

of the form
A(k)x = e,
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where e = (1, . . . , 1)⊤ and A(k) is an interval matrix built for a pair of matrices
A and A(k) (k = 1, N). Let Ξ(k) denote the united solution set for the k-th

linear system of equations. Lebesgue measure µ(Ξ̃(k)) of enclosures Ξ̃(k) of the
sets Ξ(k) are used as recognition heuristics.

We consider specific procedures that construct the matrices A(k) and justify
the choice of the right-hand side vectors of the interval linear systems. The
matrices can be built so that they are amenable to usual interval numerical
methods. Specifically, the matrices A(k) may be done H-matrices by construc-
tion, which makes it possible to use interval Gauss-Seidel method for enclosing
their united solution set [3]. The total computational complexity of the proposed
recognition algorithm is estimated as O(d2), where d = max{m,n}.

We present the results of computational experiments and comparison with
the other known approaches to the recognition problem. It is worthwhile to
note that our numerical experiments include the recognition of grayscale and
monochrome images.
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The work is devoted to maximization of stability degree for linear systems
having interval parameter uncertainty. We propose to solve this problem by
so-called coefficient method, using a sufficient conditions for specified stability
degree η.

If we are given characteristic polynomial of a linear system, A(s) = ans
n +

an−1s
n−1 + . . . + a0, an > 0, then the stability degree conditions, with regard

to the controller tunings vector k, can be written as follows [1]:





λi
(
k, η

)
=

ai−1(k)ai+2(k)(
ai(k)− ai+1(k)(n− i− 1)η

) (
ai+1(k)− ai+2(k)(n− i− 2)η

) ,

i = 1, n− 2;

fl
(
k, η

)
= al(k)− al+1(k)(n− l − 1)η, l = 1, n− 1;

g
(
k, η

)
= a0(k)− a1(k)η +

2a2(k)η2

3
.

(1)
Varying η in the above expressions allows one to find its maximum value,

which will be considered as a lower estimate η∗ of the maximum stability degree.
In such case, the synthesis problem is to choose the controller parameters k

∗

that provide the lower estimate of the maximum stability degree η∗max, which
may be called “quasimaximum stability degree” of the system.

Increasing η in each expression from (1) by the controller tunings change is
possible up to the value when λi

(
k, η

)
= 0.465. Thereby, determination of η∗max

and k
∗

requires (n− 2) solutions of the following system of equations





λi
(
k, η

)
= λ∗, i = 1, n− 2;

λj
(
k, η

)
< λ∗, j = 1, n− 2, j 6= i;

fl
(
k, η

)
≥ 0, l = 1, n− 1;

g
(
k, η

)
≥ 0.

(2)
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At each step, this results in the maximum value of η∗, and then we can choose
the maximum estimate among them.

In case the system has interval uncertainty in its parameters, the character-
istic polynomial turns to the form A(s) = ans

n + an−1s
n−1 + . . . + a0, with

intervals an > 0, and ai(k) ≤ ai(k) ≤ ai(k), i = 0, n. We apply interval meth-

ods to (2), which lead to the result which is valid for any value of ai(k). That is
why it is necessary to set such values of ai(k) in λi(k, η) from (2), when λi(k, η)
possess maximal values. Note that it is necessary to substitute such values of
interval coefficients, which provide minimum of expressions fl(k, η) and gl(k, η).
This way, the conditions (2) takes the form





ai−1(k) ai+2(k)(
ai(k)− ai+1(k)(n− i− 1)η

)(
ai+1(k)− ai+2(k)(n− i− 2)η

) = λ∗,

i = 1, n− 2;

aj−1(k) aj+2(k)(
aj(k)− aj+1(k)(n− j − 1)η

)(
aj+1(k)− aj+2(k)(n− j − 2)η

) < λ∗,

j = 1, n− 2, j 6= i;

al(k)− al+1(k)(n− l − 1)η ≥ 0, l = 1, n− 1;

a0(k)− a1(k)η +
2a2(k)η2

3
≥ 0.

(3)

The coefficients ai+1(k) and aj+1(k) can take both minimal and maximal
values. Therefore, for the controller synthesis, it is necessary to consider four
Kharitonov polynomials and three additional polynomials from (4):

D1 (s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

D2 (s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

D3 (s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . .

For the verification of the condition g
(
k, η

)
, it is necessary to consider the

additional polynomial D4 (s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . .
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ValEncIA-IVP is a verified solver which computes guaranteed enclosures
for the solution of initial value problems (IVPs) for systems of ordinary differen-
tial equations (ODEs) [1,3]. Originally, this solver has been implemented on the
basis of a simple iteration scheme that allows us to determine guaranteed state
enclosures for IVPs with continuously differentiable right hand sides. These
state enclosures are given by a numerically computed approximate solution (for
example by means of a classic explicit Euler or Runge-Kutta method) with addi-
tive guaranteed error bounds. In [3], this solution procedure was extended by an
exponential enclosure approach, allowing us to compute tighter state enclosures
for asymptotically stable processes.

To efficiently exploit the exponential enclosure approach, the state equations
are first decoupled as far as possible. For that purpose, linear dynamic systems
are transformed into their real Jordan normal form. After that, the IVP is solved
for the equivalent problem. Finally, guaranteed state enclosures in the original
coordinates are determined by a suitable verified backward transformation.

However, this decoupling procedure does not manage to eliminate the wrap-
ping effect in cases in which the (locally) linearized system model has an oscil-
latory behavior. This results from the fact that the transformed system matrix
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of the linearized model is no longer purely diagonal but has a block diagonal
structure. Geometrically, each block corresponds to a rotation (and scaling) of
state enclosures between two subsequent time steps.

To eliminate the wrapping effect that originates from this rotation, the
above-given real-valued problem with a block diagonal system matrix can be
replaced by a transformation into a complex-valued diagonal form if the linear
system model does not have multiple eigenvalues. In this contribution, a solution
procedure for the computation of state enclosures is presented which operates
on complex-valued IVPs in the corresponding normal form. This allows us to
determine contracting state enclosures for linear ODE systems with asymptot-
ically stable, conjugate complex eigenvalues of multiplicity one by means of a
complex-valued exponential enclosure approach with a suitable backward trans-
formation onto the original problem.

The theory is demonstrated using selected real-life applications from the field
of control engineering. Moreover, examples are presented to show the benefits of
applying the corresponding transformation also to linear dynamic systems with
multiple eigenvalues and uncertain parameters as well as to nonlinear processes
which exhibit oscillatory dynamics. Finally, conclusions and an outlook on how
to extend the corresponding techniques to solving IVPs for differential-algebraic
equations in ValEncIA-IVP [4] are given.
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Control-oriented mathematical models for the thermal behavior of solid ox-
ide fuel cells (SOFCs) [1] are characterized by the fact that internal parameters
can be determined only within certain intervals. This is caused by simplifica-
tions which are necessary to make mathematical system models usable for the
synthesis of control strategies such that they can be evaluated in real time. Fur-
thermore, temperature uncertainty due to limited measurement facilities in the
interior of a fuel cell stack module as well as limited knowledge about the spatial
distribution of the electrochemical reaction processes can be expressed by inter-
val parameters in a natural way. Finally, disturbances result from the variation
of electrical load demands which are a-priori unknown to the controller. To
determine control strategies which prevent the violation of constraints on the
admissible maximum operating temperatures, it is reasonable to derive control
laws directly accounting for the above-mentioned uncertainties.

The basic approaches considered for this purpose are model-predictive con-
trol as well as sensitivity-based state and parameter estimation. Both proce-
dures are extended by using interval arithmetic to obtain a verified implemen-
tation which directly accounts for uncertain variables with a bounded range.

Model-predictive control approaches are well-known means to stabilize dy-
namic systems and to compute input signals online which allow for the tracking
of desired state trajectories. These control procedures, which are partially im-
plemented by means of algorithmic differentiation, are inherently robust and
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can, therefore, be used to compensate unknown disturbances to some extent [2].
This holds even if the disturbances are neglected during the derivation of the
predictive control strategy.

In this contribution, different verified extensions are described for the de-
sign of model-predictive control strategies. These controllers are implemented
by applying interval arithmetic procedures in real time. The use of interval
arithmetic allows one to design controllers which definitely prevent the viola-
tion of predefined tolerance intervals around the desired state trajectories under
consideration of predefined limitations for the actuator operating range [3].

Like any other interval arithmetic procedure for the evaluation of dynamic
system models, interval-based predictive control procedures suffer from overesti-
mation due to multiple dependencies on identical interval variables as well as the
wrapping effect. In the case of predictive control procedures, this overestimation
may lead to control strategies which are more conservative than necessary. To
detect overestimation in the interval evaluation of the predictive control proce-
dure, physical conservation properties (derived on the basis of the first law of
thermodynamics) can be exploited in an algebraic consistency test that can be
evaluated in real time in parallel to the computation of the control law.

Finally, the implementation of the interval-based predictive control proce-
dure is described for a SOFC test rig available at the Chair of Mechatronics at
the University of Rostock. Here, non-measured state variables are reconstructed
by a verified sensitivity-based observer [4]. This contribution is concluded by
an outlook on future work focusing on algorithmic improvements for a reliable
real-time capable control as well as state and parameter estimation.
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We consider the problem of computer verification of the correctness of the
oscillator realization over Heisenberg superalgebra A1,2 of a special nonlinear
commutator superalgebra A(Y (1), AdSd) with 3 odd (t0, t1, t

+
1 ) and 6 even

(l0, g0, l1, l
+
1 , l2, l

+
2 ), generators within symbolic computational approach by

means of new programm NcNlSuperalgebra on C# [1] (having the Russian Cer-
tificate of State Registration No.2010611602). The above superalgebra naturally
arises within the procedure of construction of the Lagrangian formulation for
the higher-spin spin-tensors living on the anti-de-Sitter (AdS) d-dimensional
space-time, characterizing by non-vanishing inverse square AdS-radius r. The
oscillator realization was based, firstly, on the generalized Verma module (on
general concepts of Verma module see [2]) explicit construction for the superal-
gebra A(Y (1), AdSd) with involution. The feature of such a procedure is that
of the elements of Verma module |n0

1, n1, n2〉V , for n0
1 = 0, 1; n1, n2 ∈ N0, are

constructed with help of triangular-like decomposition of A(Y (1), AdSd) and
highest weight vector, |0〉V ≡ |0, 0, 0〉V , in opposite to Lie algebra case con-
tain more number of elements in acting of Cartan-like and positive root vectors
t0, l0, t1, l1 on |n0

1, n1, n2〉V in corresponding linear combination when the values
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of the components n1, n2 become large. Second, there exists one-to-one corre-
spondence between the constructed generalized Verma module and special Fock
space generated by the same number of Heisenberg superalgebra A1,2 gener-
ating elements, f, f+, bi, b

+
i , i = 1, 2, as the number of Hermitian elements in

A(Y (1), AdSd). However, the realization of the elements t0, l0, t1, l1 in terms
of f, f+, bi, b

+
i are non-polynomial in comparison with the Lie algebra case (for

r = 0).
In order to check the validity of the oscillator realization of A(Y (1), AdSd)

over A1,2, i.e. that the found expressions for (t0, t1, t
+
1 , l0, g0, li, l

+
i ) really satisfy

to the given algebraic relations of the non-linear superalgebra, we have elabo-
rated the program NcNlSuperalgebra permitting to solve this problem within the
restricted induction principle in power of the parameter r. We have checked the
correctness of the oscillator realization up to the sixth power in r. NcNlSuper-
algebra has some advantages and deficiencies in comparison with Plural known
as a non-commutative extension of the package Singular [3]. The computer
program is planning both to translate on C+ to enhance its processing speed
and to enlarge its possibilities for application to more complicated non-linear
algebra considered in [4] and [5].
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To my knowledge all definitions of interval arithmetic start with real end-
points and prove properties. Then, for practical use, the definition is specialized
to finitely many endpoints, where many of the mathematical properties are no
longer valid. There seems no treatment how to choose this finite set of endpoints
to preserve as many mathematical properties as possible.

Here we define interval endpoints directly using a finite set which, for exam-
ple, may be based on the IEEE 754 floating-point standard. The corresponding
interval operations emerge naturally from the corresponding power set opera-
tions. We present necessary and sufficient conditions on this finite set to ensure
desirable mathematical properties, many of which are not satisfied by other def-
initions. For example, an interval product contains zero if and only if one of the
factors does.

The key feature of the theoretical foundation is that “endpoints” of intervals
are not points but non-overlapping closed, half-open or open intervals, each of
which can be regarded as an atomic object. By using non-closed intervals among
its “endpoints”, intervals containing “arbitrarily large” and “arbitrarily close to
but not equal to” a real number can be handled. The latter may be zero defining
“tiny” numbers, but also any other quantity including transcendental numbers.

Our scheme can be implemented straightforwardly using the IEEE 754 float-
ing-point standard.
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The development of bijective coding methods for the constructive world
[1] of cubic structures in a standard lattice Rn

c (with given orthogonal-normal
frame B = {0, e1, . . . , en} in Rn), consisted of n-cubes, adjoining to each other
by (n − 1)-hyperfaces [2] is considered. Such coding provides a one-to-one
correspondence between the n-digital ternary word D (di ∈ A = {0, 1, 2})
and each k-face (k = 0, . . . , n) in an n-cube. Since it is possible to rep-
resent each individual k-face as a Cartesian product (Π) of k unit intervals
I(ei) such, that ei ∈ B1 ⊂ B, and translation (T) across the rest (n − k)
ej ∈ B2 ⊂ B(B2 = B \ B1), one may express a bijectivity property for the

k-face fnk: fnk(B1, B2) =
∏
k

I(ei) + T
n−k

(ej)
[1:1]←→< d1, . . . , dn >, di = 2 for

ei ∈ B1, dj = 0, 1 for ej ∈ B2. The sets of all n-digital ternary words A∗
n = {<

d1, . . . , dn >} are called cubants [3]. Let us supplement the alphabetA by the let-
ter ∅ (empty set) and define a digit-wise operation “multiplication” for all words
on A′∗

n, A
′ = {∅, 0, 1, 2}: 0×0 = 0; 0×1 = 1×0 = ∅; 0×2 = 2×0 = 0; 1×1 = 1;

1 × 2 = 2 × 1 = 1; 2 × 2 = 2; ∅ × (0, 1, 2) = (0, 1, 2)× ∅ = ∅. Many operations
on cubants and their properties were defined in [3], including:

1. The number of letters ∅ in the product of cubants D1 and D2 is equal a
minimal path length across edges between bijective faces:

#(∅)(D1 ×D2) = Lmin(D1;D2). (1)

2. Let D∗
1/D2 be a cubant for the furthest part in face D1 from face D2.

Then the algorithm for computing D∗
1/D2 consists in analyzing all such pairs of

digits that d1i ∈ D1, d2i ∈ D2 . . . , and changing the letters in D1 in accordance
with the rules: for the case (d1i = 2; d2i = 0) change d∗1i = 1, and for the case
(d1i = 2; d2i = 1) change d∗1i = 0; for the remaining cases there are no changes
in D1. Thus, on the basis of (1):

max
D1→D2

{Lmin(D∗
1/D2;D2)} = #(∅)((D∗

1/D2)×D2), (2)
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max
D2→D1

{Lmin(D∗
2/D1;D1)} = #(∅)((D∗

2/D1)×D1). (3)

With (2) and (3), we have a distance ρHH(D1, D2) = max{#(∅)((D∗
1/D2) ×

D2); #(∅)((D∗
2/D1)×D1)}. All the k-faces of an n-cube form a finite Hausdorff-

Hemming metric space.
The simplicial partition of an n-cube is such that each simplex is based on

successive circuit for n + 1 vertices, beginning at (00 . . .0) and completing at
(11 . . . 1) under a Hemming distance 1 requirement for each successive pair of
vertices. Each step in the circuit is parallel to ei. The general number of all such
different circuits in an n-cube is equal n!. The vertex set V and the edge set E
are calculated for circuit order (ei1, . . . ein) as follows: V = {v0 = (00 . . . 0); vi =
vi−1 + eis; s = 1, . . . , n}; E = {v0v1; v0v2; v0v3; v1v3; v2v3; . . . vn−1vn}. V and E
form a 1-skeleton of the simplex. The circuit order for a canonical partition of
the individual k-face is given on set B1 = {eis : dis ∈ D; dis = 2} = {ej1, . . . ejk}
by substitution P ∈ Sk (symmetric group): P (ej1, . . .ejk) = (em1, . . . emk).
The following operations are realized analogously to the case of an n-cube.
We denote the action of group Sk on D with respect to calculation of V and
E as Θ, and the simplex with a 1-skeleton (V,E) as ∆. Then, Θ(D,P ) =

(V,E)
[1:1]←→ ∆0(D,P ); ∆(D,P ) = ∆0(D,P )+T(eit), eit ∈ B2, t = 1, . . . , k. The

pair cubant-substitution (< d1, . . . , dn/m1, . . . ,mk >) can be entitled as sim-
pant. The common alphabet consists of all the decimal figures and some tokens.
Hence, each k-face consists of k! simplices, bijectivial to k! simpants, and their
general number in an n-cube is F∆(In) =

∑n
k=2 k!Ck

n2n−k, limn→∞ F∆(In)/n! =
e2. A notion of combinatory filling for cubic and simplex structures in Rn

c is
proposed. Finally, we discuss possibility of using modern supercomputers for
computing on sets with given combinatorial filling.
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Mathematical modeling of economic processes and consecutive establish-
ment of logical connections enable monitoring, control and management. It is
the most effective tool for solving various problems: problems of optimization,
decision-making, and many others.

One of complex problems with a nonlinear feedback studying methods is
system dynamics, on the basis of which was construct a model (1). It was
developed in the mid-twentieth century by professor of Massachusetts Institute
of Technology, J. Forrester. The aim of our work is to solve the inverse problem
of determining the control parameters of system dynamics.

This problem is resolved on the model, which describes changes in the pop-
ulation, taking into account the influence of many factors. Using complex nu-
merical algorithms, the model was corrected to achieve the required accuracy of
description [1, 2]:

dN

dt
= 8.139 · 10−22 ·N0.05 · S2 − 64.1 ·N0.03 · S0.3,

dD

dt
= 560 ·D0.35 − 9900 · I, (1)

dI

dt
= 0.131 · I−0.4 − 0.0072 · S0.092.

Where the unknown parameters of the model are: N - the population of the
Russian Federation, pers.; D - per capita income for the year, rub./person; I -
the consumer price index; S = N ·D

I
In forecasting population change, put the next problem. What should be

the system control parameters D and I to provide the necessary number in the
coming year, while maintaining an adequate description of the source data. Next
we formulated optimality principles:
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|N(t)−Nexp(t)| ≤ δ1; |D(t)−Dexp(t)| ≤ δ2; |I(t) − Iexp(t)| ≤ δ3,
All system parameters are place in a given corridor values relative to experi-
mental data.

AN ≤ 10%;AD ≤ 10%;AI ≤ 10%;

For all three equations the average approximation error is less than 10%.

|N(t)−Nexp(t+ ∆)| ≤ εN(t),

Provided the necessary predictive value of the population N change is ε = 0.001
from the actual value in the last period of time.

To organize the computer simulation a software package of mathematical
modeling methods and numerical algorithms was implemented including:

1. The direct problem solution of differential equations by numerical inte-
gration with the help of the Runge-Kutta method.

2. The initial approximations of model parameters chosen through the trans-
lation of the system of differential equations to integral equations.

3. Determination of ranges of coefficient variation in which the conditions
are adequately described.

4. Search for the model parameters by analyzing the optimality criteria.
To optimize the planned experiment it is necessary to identify the ranges

of coefficient variation in which the conditions are adequately described. We
obtained that the coefficients of the first equation vary in the range [5; 9] and
[58; 62.5], and the coefficients of the second equation vary in the ranges [325;
820] and [0; 19.200].

Analyzing the results of the experiment showed that to provide population
growth from 0 to 0.1% it is necessary to increase per capita income from 1.4%
to 27%, or increase the consumer price index from 5.4% to 7.3%.
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For any square interval matrix [A] ∈ IR
n×n, an interval inverse matrix is

the minimal interval matrix [A]−1 ∈ IR
n×n such that [A]−1 ⊃

{
A−1 : A ∈ [A]

}

[4]. It can be computed using an algorithm based on an interval method for real
inverse matrix computation [2]. Generalizing techniques elaborated for interval
inverse matrices to singular square and rectangular matrices is of scientific and
practical interest.

The pseudo-inverse matrix A+ ∈ Rn×m for A ∈ Rm×n, also known as Moore-
Penrose generalized inverse, is the only matrix satisfying the following condi-
tions [1]: AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A. For
any interval matrix [A] ∈ IR

m×n, we define the interval pseudo-inverse matrix
[A]+ ∈ IR

n×m as the minimal interval matrix such that [A]+ ⊃ {A+ : A ∈ [A]}.
So [A]+ includes all real pseudo-inverse matrices A+ for all A ∈ [A]. We need
an enclosure for [A]+ instead of exact interval pseudo-inverse matrix for most
applications. This work presents the interval Greville algorithm for interval ma-
trices pseudo-inverse enclosure. Let [A] ∈ IR

m×n, and [ak] be its k-th column,
where k = 1, . . . , n. Let [Ak] be the submatrix of [A] constructed from the first
k columns of [A]: [Ak] =

[
[a1] [a2] . . . [ak]

]
. If k = 1 then [A1] = [a1]. For

k = 2, . . . , n, it is clear that [Ak] =
[
[Ak−1] [ak]

]
.

Let k = 1. Assume [d1] = ‖[a1]‖2 =
∑m

i=1[ai1]2.

[A1]+ =





0, if [d1] = 0,

[a1]T /[d1], if [d1] > 0,

0 ∪ [a1]T /[d1], otherwise,

where 0 ∈ IR
m is the null interval vector, and ∪ is the interval hull of the union

of interval vectors.
Let k = 2, . . . , n.

[Ak]+ =

[
[Ak−1]+(I − [ak][fk])

[fk]

]
,
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where I is the identity matrix of the order m, and

[ck] = (I − [Ak−1][Ak−1]+)[ak], [dk] = ‖ck‖2,

[fk] =






[ck]T /[dk], if[dk] > 0,

[ak]T ([Ak−1]+)T [Ak−1]+/1 + ‖[Ak−1]+[ak]‖2, if[dk] = 0,

[ck]T /[dk] ∪ [ak]T ([Ak−1]+)T [Ak−1]+/1 + ‖[Ak−1]+[ak]‖2, otherwise.

Hence, [An]+ is the required enclosure for [A]+. The result can have infinite
bounds in some cases, and the probability of such situations increases for wide
and large matrices. Accuracy criterion can use tracing the defect in Moore-
Penrose conditions, which is defined as

t = ‖[A][A]+[A]− [A]‖+ ‖[A]+[A][A]+ − [A]+‖
+ ‖([A][A]+)T − [A][A]+‖+ ‖([A]+[A])T − [A]+[A]‖.

An interval pseudo-inverse matrix can be applied in optimization problems
for determination of decision set bounds, also it can be used for unstable real
matrix pseudo-inversion detection. This can be done by computing an interval
pseudo-inverse of an ε-inflation [Aε] of a given real matrix A. When [Aε]

+ is
wide or the defect is large, the pseudo-inversion is unstable.

Another interesting application is the guaranteed global parameter estima-
tion in nonlinear least squares problems whose variables are separable. It is
based on relation u = Ψ(v)+y between linear and nonlinear vectors u and v
respectively, with known response vector y, where Ψ(v) is the matrix of basis
functions built on the input-output data set [3]. For a subspace of nonlinear pa-
rameters [v], an optimal subspace of linear parameters by [u] = [Ψ([v])]+y can be
estimated. The work is supported by RFBR, project N 11-07-97504-r center a.
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This work is devoted to numerical integration of the potential and attraction
force of an ellipsoid. The problem is reduced to that of calculating the integral
of a given density distribution with a singular kernel. An easy-to-implement
semi-analytical method to calculate the integral is proposed.

The main idea of the method is to represent the sought-for function in the
form of a triple integral in such a way that the inner integral of the kernel can be
taken analytically. In doing this, the kernel is considered as a weight function.
To approximate the inner integral, a quadrature formula for the product of func-
tions, one of which has an integrable singularity, is proposed. This approach
enables one to obtain an integrand with a weak logarithmic singularity. This
singularity can be easily eliminated by a change of variables in the next outer
integral. Thus, to calculate all the integrals, quadrature formulas without sin-
gularities are obtained. Additionally, the functions to be calculated do not have
large values within the integration domain. To obtain higher accuracy of the nu-
merical calculations, it is sufficient to simply increase the number of integration
points along each of the coordinates. This approach is not always acceptable in
many other integration methods because of the presence of a singularity in the
integrands.

The method is illustrated by numerical experiments for which complicated
test functions are constructed. These functions, which are the exact potential
and exact attraction force of an ellipsoid of revolution with an elliptical distri-
bution of density, have value of its own and can be used for other purposes.
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In this talk, a method of computer-assisted proof is proposed for systems of
elliptic partial differential equations:





−ε2∆u = f(u)− δv, in Ω,
−∆v = u− γv, in Ω,
u = v = 0, on ∂Ω.

(1)

Here, Ω is a bounded polygonal domain in R2. ε 6= 0, γ and δ are real parameters.
A mapping f : H1

0 (Ω) → L2(Ω) is assumed to be Fréchet differentiable. When
u is a known function, the boundary value problem:

{
−∆v = u− γv, in Ω,
v = 0, on ∂Ω,

(2)

has a unique solution. Then, v is presented by v = Bu, where B : L2(Ω) →
H1

0 (Ω) is a solution operator of (2). Substituting this for (1), it follows

{
−∆u =

1

ε2
(f(u)− δBu) , in Ω,

u = 0, on ∂Ω.
(3)

Transforming (1) into (2) and (3) allows the verification of solutions. Y. Watan-
abe has studied this type of system (1) by Nakao’s theory, which is based on
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fixed-point theorems. Using the Newton-Kantorovich theorem with the opera-
tor norm ‖B‖L2,H1

0
, a verification method for (2) and (3) is proposed. If γ is

not an eigenvalue λ of the Laplace operator, there exists the solution operator
B. The operator norm ‖B‖L2,H1

0
can be estimated as follows:

‖B‖L2,H1
0
≤ Ce,2K, (4)

where Ce,2 is the Poincaré constant and

K := max

{∣∣∣∣
λ

λ+ γ

∣∣∣∣ : λ is eigenvalue of the Laplace operator, γ ∈ R \ {λ}
}
.

Hence, the upper bound of operator norm ‖B‖L2,H1
0

is obtained simply by the
eigenvalue λ. Our verification method is based on the following two studies. A
verified evaluation for eigenvalues of the Laplace operator has been shown by
X. Liu and S. Oishi [2]. A. Takayasu, X. Liu and S. Oishi have proposed the
verification method for solutions to nonlinear partial differential equations using
the Newton-Kantorovich theorem [3]. In our procedure, approximate solutions
û and v̂ of the system (1) are calculated by the finite element method. The
inequality (4) yields a rigorous upper bound of the norm ‖B‖L2,H1

0
, which leads

to the guaranteed error estimate ‖u− û‖H1
0

based on the Newton-Kantorovich
theorem. Further, the upper bound of ‖v − v̂‖H1

0
is given by the operator

norm ‖B‖L2,H1
0

and ‖u − û‖H1
0
. Detailed proofs and numerical results will be

presented.
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Due to measurement errors, the result ỹ = f(x̃1, . . . , x̃n) of processing
measurement outcomes is, in general, different from the desired result y =
f(x1, . . . , xn) of processing actual (unknown) values xi. It is desirable to es-

timate the difference ∆y
def
= ỹ − y [4].

When we only know the bounds ∆i on measurement errors ∆xi
def
= x̃i − xi,

the only information that we have about y is that y ∈ y
def
= {f(x1, . . . , xn) :

x1 ∈ x1, . . . , xn ∈ xn}, where xi = [x̃i −∆i, x̃i + ∆i]. Computing such a range
y is one of the main problems solved by interval computations [2].

Often, in addition to the bounds ∆i, we have partial information about the
probability of different values ∆xi. A general probability distribution can be

described by the cumulative distribution function (cdf) F (x)
def
= Prob(η ≤ x).

Partial information means that instead of knowing the exact values F (x), we
only know bounds F (x) ≤ F (x) ≤ F (x). The corresponding “interval-valued”
cdf [F (x), F (x)] is known as a probability box, or p-box, for short [1].

P-boxes are useful in decision making, where the objective is often to sat-
isfy a given inequality-type constraint, and p-boxes provide the probability of
satisfying this constraint. In many practical situations (e.g., in control appli-
cations), the objective is to find how far is the actual value y from our esti-

mate ỹ. We know that the desired probability p
def
= Prob(−∆ ≤ η ≤ ∆) is

equal to F (∆)−F (−∆), so based on the known p-boxes, we can conclude that

p ≤ p̃
def
= F (∆) − F (−∆). However, often, this p̃ is an overestimation: e.g., for

∆ = 0, we have p = 0, while for p-boxes of finite width w, we have p̃ = 2w.
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To get better bounds for p, we use probabilistic nested intervals: 1-parametric
families of confidence intervals xi(α) for which Prob(xi ∈ xi(α)) ≥ 1 − α and
xi(α) ⊆ xi(α

′) when α′ < α. E.g., when we have a systematic error component
with known bounds [−∆si,∆si] and a normally distributed random error com-
ponent with a known σi, the confidence intervals are obtained by adding the
usual Gaussian confidence interval to the interval [x̃i −∆si, x̃i + ∆si].

Probabilistic nested intervals are a particular case of nested intervals [3].
However, [3] focused on expert estimates, where it was reasonable to assume that
when we know that xi ∈ xi(α) with confidence 1− α, then y = f(x1, . . . , xn) ∈
f(x1(α), . . . ,xn(α)) with the same confidence 1 − α. This assumption led to
explicit formulas for propagating expert-related nested intervals through com-
putations.

In contrast, it is usually assumed that random errors of different measure-
ments are independent [4]; in this case, when for each i, we have xi ∈ xi(α) with
probability ≥ 1−α, then we can only conclude that (x1, . . . , xn) ∈ x1(α)× . . .×
xn(α) (and thus, that y = f(x1, . . . , xn) ∈ f(x1(α), . . . ,xn(α))) with probabil-
ity ≤ (1−α)n ≪ 1−α. So, we need new formulas for propagating probabilistic
nested intervals. Such formulas will be described in the talk.

When measurement errors ∆xi are small, we can safely ignore terms quadratic
(and of higher order) in ∆xi. For this linearized case, we can use automatic
differentiation to design efficient algorithms. We can further speed up compu-
tations because in practice, inputs are usually known with 5-10% accuracy. In
such situations, the result can only be computed with a similar 1-digit accuracy,
so there is no need to perform iterations that improve the 2nd digit. A practical
example of such a speed-up will be presented.

References:

[1] S. Ferson, RAMAS Risk Calc 4.0: Risk Assessment with Uncertain
Numbers, CRC Press, Boca Raton, Florida, 2002.

[2] R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[3] H.T. Nguyen, V. Kreinovich, Nested intervals and sets: concepts, re-
lations to fuzzy sets, and applications, in Applications of Interval Compu-
tations (R.B. Kearfott et al., eds.), Kluwer, Dordrecht, 1996, pp. 245–290.

[4] S. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, Springer, New York, 2005.

159



Deterministic global optimization

using the Lipschitz condition

Yaroslav D. Sergeyev

University of Calabria, Rende, Italy
and N.I. Lobatchevsky University of Nizhni Novgorod, Russia

Via P. Bucci, Cubo 42-C, 87036 Rende (CS), Italy
yaro@si.deis.unical.it

Keywords: global optimization, Lipschitz condition, partitioning strategies

In this lecture, the global optimization problem of a multidimensional func-
tion satisfying the Lipschitz condition with an unknown Lipschitz constant over
a multi-dimensional box is considered. It is supposed that the objective function
can be “black box”, multiextremal, and non-differentiable. It is also assumed
that evaluation of the objective function at a point is a time-consuming oper-
ation. Many algorithms for solving this problem have been discussed in the
literature (see [1–12] and references given therein). They can be distinguished,
for example, by the way of obtaining an information about the Lipschitz con-
stant and by the strategy used to explore the search domain.

Different exploration techniques based on various adaptive partition strate-
gies are analyzed. The main attention is dedicated to diagonal algorithms, since
they have a number of attractive theoretical properties and have proved to be
efficient in solving applied problems. In these algorithms, the search box is adap-
tively partitioned into sub-boxes and the objective function is evaluated only at
two vertices corresponding to the main diagonal of the generated sub-boxes.

It is demonstrated that the traditional diagonal partition strategies do not
fulfill the requirements of computational efficiency because of executing many
redundant evaluations of the objective function. A new adaptive diagonal par-
tition strategy that allows one to avoid such computational redundancy is de-
scribed. Some powerful multidimensional global optimization algorithms based
on the new strategy are introduced. Results of extensive numerical experiments
performed to test the methods proposed demonstrate their advantages with re-
spect to diagonal algorithms in terms of both number of trials of the objective
function and qualitative analysis of the search domain, which is characterized
by the number of generated boxes. Finally, problems with Lipschitz first deriva-
tives are considered and connections between the Lipschitz global optimization
and interval analysis global optimization are discussed.
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A new methodology (see [6,9]) allowing one to execute numerical computa-
tions with finite, infinite, and infinitesimal numbers on a new type of a com-
putational device called the Infinity Computer (EU, USA, and Russian patents
have been granted) is introduced. A calculator using the Infinity Computer
technology is presented during the talk. The new approach (its relations with
traditional approaches are discussed in [4-6,9]) applies the principle ‘The part
is less than the whole’ to all numbers (finite, infinite, and infinitesimal) and to
all sets and processes (finite and infinite). It is shown that it becomes possible
to write down finite, infinite, and infinitesimal numbers by a finite number of
symbols as particular cases of a unique framework (different from that of the
non-standard Analysis). The new methodology (among other things) introduces
infinite integers having both cardinal and ordinal properties.

The point of view on infinite and infinitesimal quantities presented in this
talk uses strongly two methodological ideas borrowed from the modern Physics:
relativity and interrelations holding between the object of an observation and
the tool used for this observation. Thus, connections between different numeral
systems used to describe mathematical objects and the objects themselves are
emphasized. The new computational methodology gives the possibility both
to execute numerical (not symbolic) computations of a new type and simplifies
fields of Mathematics where the usage of the infinity and/or infinitesimals is nec-
essary. Numerous examples and applications are given: differential equations,
divergent series, fractals, linear and non-linear optimization, numerical differ-
entiation, percolation, probability theory, Turing machines, etc. (see [1-10]).
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A lot of additional information on the new methodology (papers, reviews,
awards, etc.) can be downloaded from http://www.theinfinitycomputer.com
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When processing data, it is often very important to take into account mea-
surement uncertainty, i.e., the fact that the measurement results x̃ are, in gen-
eral, different from the actual (unknown) value x of the corresponding quantity.

In measurement theory, traditionally, a measurement error ∆x
def
= x̃− x is sub-

divided into random and systematic components ∆x = ∆sx + ∆rx (see, e.g.,
[2]): the systematic error component ∆sx is usually defined as the expected
value ∆sx = E[∆x], while the random error component is usually defined as

the difference ∆rx
def
= ∆x − ∆sx. By definition, the systematic error compo-

nent does not change from measurement to measurement, while the random
errors ∆rx corresponding to different measurements are usually assumed to be
independent.

For the systematic error component, we only know the upper bound ∆s

for which |∆sx| ≤ ∆s. Thus, the only information that we have about the
value of this component is that it belongs to the interval [−∆s,∆s]. Because of
this fact, interval computations are used for processing the systematic errors.
The random error component is usually characterized by the corresponding
probability distribution; often, it is assumed to be Gaussian, with a known
standard deviation σ.

164



For many Earth and environmental science measurements, the differences
∆rx = ∆x −∆sx corresponding to nearby moments of time are often strongly
correlated. For example, meteorological sensors may have daytime or nighttime
biases, or winter and summer biases. To capture this correlation, environmen-
tal science researchers proposed an empirically successful semi-heuristic three-
component model of measurement error. In this model, the difference ∆x−∆sx
is represented as a combination of a “truly random” error ∆tx (which is inde-
pendent from one measurement to another), and a new “periodic” component
∆px.

We provide a theoretical explanation for this heuristic three-component
model, and we show how to extend the traditional interval and probabilistic
error propagation techniques to this three-component model. Our preliminary
results are described in [3].

In practice, instead of a single quantity x (temperature, density, etc.), we
often have a field x(s) in which the value of the quantity changes with a spatial
location s (and, sometimes, with time t). For fields, the measurement error
x̃(s) − x(s) is caused not only by the inaccuracy of the measuring instrument
(MI), but also by the fact that the output x̃(s) of the MI is determined by the
average

∫
K(s− s′) · x(s′) ds′ over a neighborhood s′ ≈ s (here, K(s) describes

the instrument’s spatial resolution). In the talk, we describe how to take into
account this additional uncertainty, and how to decrease it by merging (“fusing”)
two results x̃1(s) and x̃2(s) obtained from measuring the same field x(s); our
preliminary results appeared in [1]. As a case study, we consider the combination
of density descriptions obtained from seismic measurements and from gravity
measurements.
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Theory of AE-solution sets (AEss) for interval systems of linear equations
was developed by Shary (see e.g. [1]). The united solution set (USS), the
tolerable solution set and the controllable solution set are particular cases of
the AE-solution sets.

It is known [1] that the intersection of an AE-solution set with a closed
orthant is a convex polyhedron. A system of linear inequalities determining this
polyhedron may be obtained from the initial interval system of equations.

Programs that allow ‘to see’ the AE-solution set are useful in analysis of it
properties and in debugging the methods for estimation of this set. By now,
there are several such programs:

author(s) language address
maximum size
of system and
solution type

process
unbounded

sets

process
thin
sets

Rump Z. Matlab [2] 3× 3 USS − +
Krämer W.,
Paw G.

Java [3] 3× 3 USS ∓ ∓

Krämer W.,
Braun S.

Maple [3] 3× 3 USS ∓ ∓

Popova E.D. Mathematica [4] 3× 3 USS ∓ −
Popova E.D. Mathematica [5] 2× 2 AEss ∓ −
Sharaya I.A. PostScript [6] 2× 2 AEss + +

These programs handle the systems with no more than 3 rows and have diffi-
culties in processing unbounded and thin sets.

What will be presented in the talk are
• a new MATLAB package for visualization of AE-solution sets
• and boundary intervals method as a base of this package.
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Boundary intervals method is a new visualization method for solution set of
linear inequalities system. It may be used (and modified) for

— solution set to system of two-sided linear inequalities and
— AE-solution set to interval system of linear equations.

The key object of the method is a boundary interval.

Definition. Let us be given the system of linear inequalities Ax ≥ b with
A ∈ Rm×2, b ∈ Rm. If the set { x | (Ai:x = bi) & (Ax ≥ b) } for i ∈ {1, . . . ,m}
is not empty, we call it boundary interval.

A boundary interval as a set of points on the plane may be a single point, a
segment, a ray or a straight line. All edges of the set {x | Ax ≥ b} are boundary
intervals. Some vertices of this set may be boundary intervals too.

Boundary intervals method allows ‘to see’ 2D and 3D AE-solution sets for
interval linear systems with rectangular matrices and can process unbounded
and thin sets.

The work is supported by the State Program for Support of Leading Scientific
Schools of Russian Federation (grant No. NSh-6293.2012.9).
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Our work is devoted to the problem of global optimization of a real-valued
function f : Rn ⊇X → R over an axis-aligned interval box X :

find min
x∈X

f(x). (1)

During the last decades, various interval techniques [1,2,3] have been developed
for the solution of the problem (1). They enable one to reliably compute two-
sided bounds for both the global optimum of f and the argument at which it
is attained. The common basis of these methods is adaptive, according to the
“branch-and-bound” strategy, subdivision of the objective function domain X

combined with interval evaluation of the ranges of f over the resulting subboxes
of X. When executing, such methods iteratively refine interval estimates of
the objective function through splitting, step by step, the boxes on which the
estimate is the best at the current step.

Extensive employing such interval global optimization algorithms has re-
vealed a number of problems. If the dimension of the problem is large, and/or
the objective function f has a lot of local extremums, the deterministic inter-
val global optimization algorithms can have low performance and produce an
answer with considerable overestimation.

Usual ways to improve efficiency of the interval global optimization meth-
ods include increasing accuracy of interval evaluation, incorporating, into the
algorithm, procedures that exclude the subboxes without the optimum, etc. For
complex objective functions, one of the main sources of inefficiency is a large
amount of unnecessary splittings, and it makes sense to pay more attention to
the selection of the box to be subdivied at each step of the algorithm.
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In our work, we develop interval global optimization algorithms of a new
type that are based on the traditional adaptive subdivision-estimation of the
search area, but involve randomization, i. e. introduce a stochastic control into
the usual deterministic scheme [4]. This combination provides improved compu-
tational efficiency in comparison with ordinary purely deterministic algorithms.
Besides, implementation of the above general idea may result in either strictly
verified algorithms or those providing only probabilistic guarantees of the an-
swer.

The simplest randomized interval optimization algorithms are “random in-
terval splitting” [4] and “random interval priority splitting” [5]. The latter is
an improvement of the former one supplied with so-called prioritization of the
subboxes according to their width and/or current estimate.

More involved algorithms we have constructed on this way are interval sim-
ulated annealing [4] and a few interval evolution algorithms that develop the
general idea of genetic algorithms [5,6].

In the randomized interval methods, the use of stochastic control passes
facilitates solving complex problems more efficiently than with the traditional
deterministic interval methods. In particular, we feature “verified versions” of
such algorithms that provide, in spite of their stochastic character, numerical
verification of the answer and produce, on output, two-sided interval bounds for
the global optimum.
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There exists a split between reliable computing and program verification
communities: sometimes it seems that computing people assume that program
code that “implements” a reliable method can be justified by extensive testing,
while verification people think that reliability of any specified computational
program can be formally verified in automatic mode from scratch. We try to find
a compromise both extreme viewpoints by suggesting, formalizing and verifying
(manually but formally) templates for design of algorithms for combinatorial
optimization.

In particular, we formalize three algorithmic design patterns that are core
patterns in the combinatorial optimization, namely: Dynamic Programming
(DyP), Backtracking (BTR) and Branch-and-Bound (B&B). They can be for-
malized as design templates, specified by correctness conditions, and formally
verified in Floyd – Hoare methodology [1]. BTR and B&B templates have been
considered in [2] in full details, DyP is sketched below. A methodological novelty
consists in treatment (interpretation) of DyP as the set-theoretic least fix-point
(lfp) in a virtual domain (according to Knaster–Tarski theorem).

Dynamic Programming [3] is a recursive method for solving optimization
problems presented by appropriate Bellman equation. We can assume without
loss of generality that the Bellman equation has the following canonical form

G(x) = if p(x) then f(x) else g(x, (G(ti(x)), i ∈ [1..n])),

where G : X → Y is the objective function, p ⊆ X is a known predicate,
f : X → Y is a known function, g : X∗ → X is a known function with a
variable (but finite) number of arguments n, and all ti : X → X , i ∈ [1..n] are
known functions also.

Dynamic Programming template (specified in Hoare style [1]) follows.
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\\Precondition:
{D is a non-empty set of argument values,

S and P are ‘‘trivial’’ and ‘‘target’’ subsets in D,

F:2D →2D is a call-by-value total monotone function,

ρ:2D×2D →Bool is a call-by-value total function

monotone on the second argument}
\\Template:
var Z:= S, Z1 : subsets of D;

repeat Z1:= Z ; Z:= F(Z) until (ρ(P,Z) or Z=Z1)

\\Postcondition:
{ρ(P,Z) ⇔ ρ(P, lfp λQ.(S∪F(Q)))}

Proposition. (1) Dynamic Programming template is partially correct, i.e.
for any input data that meets the precondition, the algorithm instantiated from
the template either loops or halts in such a way that the postcondition holds
upon the termination. Assuming that for some input data the precondition of
the Dynamic Programming template is valid, and the domain D is finite, then
the algorithm instantiated from the template terminates after at most |D| iter-
ations of the loop repeat-until.
(2) Let us consider the above Bellman equation and let SPP : X → 2D be
the following support function: SPP (x) = if p(x) then {x} else {x} ∪
(
⋃

i∈[1..n] SPP (ti(x))). Let v ∈ X be any value. If to adopt (in the DyP tem-

plate) the graph of G on SPP (v) as D, a set {(u, f(u))|p(u) & u ∈ SPP (v)}
as S, a singleton {(v,G(v))} as P, a mapping Q 7→ {(u,w) ∈ D | ∃w1, . . .
wn : (t1(u), w1), . . . (tn(u), wn) ∈ Q & w = g(u,w1, . . . wn)} as F: 2D → 2D,
and ∃w : (v, w) ∈ (R ∩ Q) as ρ(R,Q) : 2D × 2D → Bool, then the instantiated
algorithm computes G(v) in the following sense: it terminates after iterating
repeat-until loop |SPP (v)| times at most, upon the termination (v,G(v)) ∈Z
and there is no any w ∈ Y (other than G(v)) such that (v, w) ∈Z.

Some examples that illustrate the use of DyP template will be given in the
conference talk and in a forthcoming full paper.
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Our work considers problems of mathematical theory of measurements anal-
ysis. We assume that a model describes the measurements within the accuracy
of the latter, provided that the following set of inequalities is satisfied:

|Xexp −Xcalc| ≤ ε (1)

where ε is the vector of the maximum allowable inaccuracy of experimental
measurements of X .

We define the uncertainty range for each calculated parameter ki, i =
1, . . . , n, as such an interval

di = [ min ki,max ki ] (2)

that the system (1) is consistent for some values of the input data within that
range.

The formulation of the problems of determining the ranges (2) provided that
the set of constraints (1) is satisfied belongs to L.V.Kantorovich [1]. Nowdays,
the terms set-membership approach or error-bounded data are usually used in
connection to this approach.

The values of εj in the system of inequalities (1) are the characteristics of
the maximum allowable experimental error. In such case, fulfillment of the
conditions (2) means that the model describes the measurements within the
limits conditioned by the maximum allowable measurement error, which is quite
reasonable.

In our work, we developed Kantorovich’s approach in application to the
solution of inverse problems of chemical kinetics [2].
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A principal feature of Kantorovich’s approach is the fact that, based on
mathematical programming ideas, it allows the measurement informativity to
be analyzed using solutions of the conjugate problem (or the dual problem, in
terms of linear programming). The solutions of the conjugate problem allow
one to distinguish the points that define the minimum and maximum for each
of the constants from a large set of experimental data. If the range dj of a
certain constant appears to be too large, analysis of the solution to the conjugate
problem allows us to build the plan of measurements (conditions and accuracy
of new experiments) in order to reduce the range for the value defined by some
additional requirements.

Thus, the uncertainly ranges

di = [ min kj ,max kj ], j = 1, . . . ,m,

for the parameters kj , set by the equation (2), are ranges within which the
inequality (1) is satisfied, i.e., within which the kinetic model does not con-
tradict the measurements. The vector d = (d1 . . . dm) characterizes a degree
of uncertainty for each of the target parameters caused by measurement er-
rors. Using this vector, we can determine the measurement accuracy in certain
points required to ensure that the degree of uncertainty in the parameters does
not exceed a preset value.

The multidimensional uncertainty region will be understood as a set of points
that correspond to parameter values in which the relation (1) is valid.

Thus, if the kinetic model of a reaction involves n parameters, the uncer-
tainty region will be n-dimensional. Our goal is to find (in some sense) the
uncertainty regions and their two-dimensional projections onto a plane defined
by couples of parameters.

The major problem in the use of this method arises in the calculation of mul-
tidimensional uncertainty regions. The problems that arise are of both mathe-
matical and physicochemical nature. In particular, the physicochemical inter-
pretation of uncertainty regions becomes the main problem. These problems
are the subject of our further studies in this direction.
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This study deals with inverse problems of identification of mechanisms of
complex chemical reactions based on kinetic measurements.

The inverse problem consists in determining the rate constants of elementary
steps involved in the mechanism of a complex chemical reaction from experi-
mental data on the concentrations of compounds involved in the reaction.

The main difficulty is that, generally, only some of the compounds involve
in a reaction can be measured. This insufficient informativity results in the
non-uniqueness of the inverse problem solution.

The purpose of this article is a mathematical study of the informativity
problem:

- a classification of non-uniqueness types of solutions of inverse problems of
chemical kinetics depending on the type of the experiment is provided;

- a methodology is developed for analysis of informativity of kinetic mea-
surements in the solution of inverse problems, which allows one to determine
the number and form of independent combinations of reaction rate constants
that can be evaluated unambiguously from various kinetic experiment types;

- it is proven that the measurable characteristics of a reaction mechanism
are invariant with respect to certain transformations of kinetic parameters. It
is proven that these transformations are group transformations (continuous or
discrete, depending on the experiment type).

- a methodology is developed for reduction of systems of differential equations
of chemical kinetics to systems with smaller dimensionality under the condition
that they remain adequate to the actual sets of measurements.

The non-uniqueness of solutions of inverse problems of chemical kinetics re-
sults in the existence of uncertainty regions of kinetic constants. An uncertainty
region will be understood as such a region [1] within which variation of kinetic
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constants allows kinetic measurements to be described within their accuracy
[2-3].
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The method of system dynamics in the case study of a model with two
variables suggests dependency of the following form:

dx

dt
= a1x

α1yβ1 − a2xα2yβ2 ,

dy

dt
= a3x

α3yβ3 − a4xα4yβ4 .

(1)

The direct view of the system dynamics model (1) depends on the parameter
values { ai, αi, βi }, i = 1, 4, which are defined based upon available statistical
data. In the case where the researcher takes into consideration the variables,
special methods are applied to obtain point estimates of parameters in response
to the complex relationship between said variables. The aforementioned rela-
tionship does not allow even a first approximation to determine the parameters
of system dynamics models. Moreover, it is necessary to know the permissible
range of variation for the performance of the numerical experiment to “cus-
tomize” the model.

The proposed method is based upon a linearization of system (1). Using
Maclaurin expansion of the right-hand sides of the equations (1), based on the
available observations, it is possible to identify point and interval estimates
specifically for parameters {ai}, i = 1, 4. Therefore, the solution of the problem
will be carried out in two steps. On the first step, based on Maclaurin series
expansions of the equations (1), we define the point and interval estimates:
{a0i }, i = 1, 4 and {[a−i ; a+i ]}, i = 1, 4. In the second step, we compute point
and interval estimates for all the parameters of the model (1), using a linear
expansion of the equations in Taylor series centered at {a0i , αi = 0, βi = 0},
i = 1, 4. Estimation of the intervals {[a−i ; a+i ]}, i = 1, 4, allows variation of the
expansion center at the second step.
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The number of observations in practical problems is large, so the problem
solved a priori is overdetermined. Moreover, they are characteristically flawed;
approximate initial data implies the failure of requirements for well-posed prob-
lems. These circumstances significantly limit the number of methods for deter-
mining point and interval estimates of the parameters of the system dynamics
models. In this regard, a particularly interesting approach of L.V. Kantorovich,
who first floated the idea of obtaining accurate two-sided bounds for model
parameters and the location of desired surfaces and observed values.

The problem of determining the parameters of the model (1) for each of the
model equations separately, taking into account the above mentioned features,
is reduced to solving an inconsistent system of m linear equations with n un-
knowns. Therefore, to verify that the calculated and experimental data agree
in the deviation, for example, in the first equation of system (1), we have to
consider

ηi =

(
dx

dt

)calculated∣∣∣∣
i

−
(
dx

dt

)experimental∣∣∣∣
i

, i = 1,m. (2)

The standard way to solve the problem of determining the parameters of
the model (1) is to minimize deviations {ηi, i = 1,m} in terms of a certain
introduced criterion. The basic selection criterion is the information on the
distribution of measurement errors. In real systems, such information is missing
as a rule, while we have an information on the maximum permissible error of
measurement at our disposal. This fact is the main argument in favor of the
approach of L.V. Kantorovich.

The condition that the model describes the observed values leads to a system
of inequalities

|ηi| ≤ εi, i = 1,m, (3)

where εi − ith is the i-th measurement error. Numerical solution of the abobe
system involves the use as an initial approximation for at least one point, pro-
viding the validity of all the relations (3). This point can be found by enforcing
the optimum condition for each criterion, which characterizes the agreement
between the calculated and experimental data. For example, one such criterion
can be the sum of squared deviations.

A significant advantage of this approach is its capability to take into ac-
count a priori constraints on the values of the parameters with the required
dependencies, known from additional sources that can significantly reduce the
uncertainty of problems.
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The Conjugate Gradient (CG) algorithm is one of the best known iterative
methods for solving linear systems with symmetric, positive definite matrix [1].
The performance of the CG can be dramatically increased with the suitable
preconditioner. The concept of the preconditioning in iterative methods is to
transform the original system into an equivalent system with the same solution,
but a lower condition number. However, the computational overhead of applying
the preconditioner must not cancel out the benefit of fewer iterations [2, 3].

Modern parallel implementations of the preconditioned conjugate gradient
(PCG) on the graphical processing units (GPUs) uses sparse approximate in-
verse (AINV) preconditioners due to attractive features. First, the columns or
rows of the approximate inverse matrix can be generated in parallel. Second,
the preconditioner matrix is used in PCG through matrix-vector multiplications
which are easy to parallelize [3]. Thereby the accuracy of the inverse approxi-
mation is important.

In this work, we present an algorithm for building a series of AINV precon-
ditioners with arbitrary high approximation accuracy. Presented algorithm de-
rives from the Hotelling-Schulz algorithm for inverse matrix elements correction
[4, 5]. In this algorithm it is assumed that D0 is a certain initial approximation
of the A−1. With the condition

‖R0‖ ≤ k < 1

where
R0= I−AD0
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we can build the sequence:

D1=D0(I + R0), R1= I−AD1

D2=D1(I + R1), R2= I−AD2

. . . . . . . . . . . . . . .

Dm=Dm−1(I + Rm−1), Rm= I−ADm

It is shown that obtained sequence converges quickly to the A−1.
Due to presented approach we refined existed Jacobi and Symmetric Suc-

cessive Over-Relaxation preconditioners [6] with reasonable approximation ac-

curacy. All algorithms were implemented on NVIDIA
TM

GPU and numerical
results obtained for real-life matrices.
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In this talk, a method of computer-assisted error estimate is proposed for
second-order divergence form problems on a bounded domain Ω ⊂ RN (N =
1, 2, 3) with the Dirichlet boundary condition:

{
−div(a(x)∇u) = f(x), in Ω,
u|∂Ω = 0.

Assuming that f(x) ∈ L2(Ω) and a(x) ∈ W 1,∞(Ω), the solvability of the elliptic
problem with degenerate coercivity is shown. Here, degenerate coercivity means
that there is a point x ∈ Ω satisfying a(x) = 0. Using a bilinear form, a weak
formulation of the original problem is obtained.

Find u ∈ H1
0 (Ω) satisfying (a(x)∇u,∇v) = (f, v), ∀v ∈ H1

0 (Ω).

The solvability of the weak solution is related to the inf-sup condition, which
is sometimes called as LBB-condition in FEM theory [1,2,3]. Using verified
computations, the lower bound of a value with respect to the inf-sup condition
is bounded. It is based on Fredholm’s alternative theorem.

After that let Vh ⊂ H1
0 (Ω) be a certain finite element subspace. Constructive

a priori error estimate is obtained for a certain orthogonal projection Rh :
H1

0 (Ω)→ Vh (Ritz-projection) defined by

(a(x)∇(u −Rhu),∇vh) = 0, ∀vh ∈ Vh.
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If conditions continuity and coercivity are satisfied, Céa’s lemma gives desired
a priori error estimate: ‖u − Rhu‖H1

0
≤ C(h)‖f‖L2. On the other hand, it

is difficult to obtain the error bound with degenerate coercivity. Our main
theorem gives the solvability and constructive a priori error estimate based on
the inf-sup condition. Further, convergence rate of the error estimate is analyzed
with computer-assistance. Computational results will be presented to show the
solvability and error estimates for the weak solution of original problems.
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Interval numbers and interval analysis [1–3] have been inspired primarily by
computer calculation. In its turn, the computer calculation as a physical process
borrows and inherits the interval structure of results of natural measurements.

Uncertainty relation (UR) of classical physics adequately describes the un-
certainty intervals of natural measurements of a pair of mutually independent
variables. To adequately determine the uncertainty interval of natural measure-
ments of a pair of variables related functional dependence, the generalization of
classical UR was postulated [4]. The uncertainty ∆f of a measured dependent
variable f proposed as equal to the sum of random and deterministic dynamic
components. The generalization of classical UR which takes into account the dy-
namic of physical process was called dynamic uncertainty relation (DUR) [5, 6].
DUR generates an algorithm that provides the minimal uncertainty ∆fmin(∆t∗)
of the measured dependent variable f when it is measured within the interval
with optimal width ∆t∗ of the independent variable t. The interval ∆fmin is a
potential accuracy of natural measurement and is not an artifact. The optimal
interval ∆t∗, hereinafter referred to as natural, is locally determined for each i-th

sample unit: ∆t∗i =
(√
µi−1 ·

∣∣∆fmin(∆t∗i−1)/∆t∗i−1

∣∣)−0,5
, i = 2, 3, ... and is a

measuring and computing element of the adaptive algorithm. In addition to the
computation of natural interval ∆t∗ for each sample unit the interval ∆fmin and
interval one-dimensional derivative ∆fmin/∆t

∗ are also calculated. The initial
value of natural interval ∆t∗1 is calculated by other algorithms. Natural interval
is limited to the values ∆t∗ > 0 and its width ∆t∗ can not be arbitrarily reduced.
Computing the derivative ∆fmin/∆t

∗ on an interval is free from the problem of
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inaccuracy. The proposed process of measurement is adaptation of the width
∆t of measurement interval to the derivative ∆fmin/∆t

∗ on this interval and to
the signal-to-noise ratio µ of the measured variable f at each sample unit. In
distinction to the known methods of natural measurements the proposed adap-
tive algorithm combines samples of both natural measurements and computer
calculations, carried out simultaneously as part of a single measurement-and-
calculation process. The purpose of this work is to show, on examples, that the
algorithm originally found for natural measurements is identical, to within the
accepted approximation, to the algorithm of computer calculations.

Numerical tests of the proposed method with known methods carried out by
comparing the accumulated errors in the whole field of numerical integration.

For the test calculations was chosen the integral I =
∫ 1

exp(−p)(1/x) dx = p.

Numerical integration of the method of trapezoids and average rectangles was
done with optimal constant step, providing a minimum cumulative error over
the entire area of integration. The integration of adaptation is also realized by
schemes trapezoids and rectangles. A comparison shows a decrease in few times
in the number of nodes by the method of adaptation compared to the classic,
the accumulated error of the method of adaptation shows a decrease on 1–2
orders of magnitude.

As shown by numerical tests, the computer calculations and the natural
measurements has affinity and structural identity to within the accepted ap-
proximation.
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Laurent Thévenoux1, Matthieu Martel2 and Philippe Langlois3

1 Univ. Perpignan Via Domitia, Digits, Architectures et Logiciels
Informatiques, F-66860, Perpignan, France

2 Univ. Montpellier II, Laboratoire d’Informatique Robotique et de
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Algorithms using IEEE-754 floating-point arithmetic [1] may suffer from
inaccuracy generated by rounding since floating-point numbers are approxima-
tions of real numbers. This inaccuracy is a critical matter in scientific computing
as well as for embedded systems. Several techniques have been introduced and
applied to improve the accuracy of numerical algorithms, as for instance com-
pensation or error-free transformations [2], . . . .

In practice these solutions are mainly known by experts and the correspond-
ing program transformations must be implemented manually. Our objective
is to allow the standard software developer to automatically transform his/her
code. This transformation is actually an optimization since we aim to take into
account two opposite criteria: accuracy and execution time. A first step towards
this automatic optimization is presented in this work.

We propose to automatically introduce at the compile-time compensation
steps in (parts of) the floating-point computations. We present a tool to parse
C codes and to insert compensated floating-point operations. A new C code is
generated by replacing in the original code, floating-point operations (+,−,×)
by their respective compensated algorithms: TwoSum, TwoProd, etc. [2]. These
compensated terms are computed and accumulated in parallel to the original op-
erations. This provides a compensated computation that improves the accuracy
of specific computing patterns.
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We apply this approach to some test cases aiming to reproduce automati-
cally what experts have done manually. In [3] for instance the authors propose
a compensated polynomial evaluation. They evaluate the Horner form of the
polynomial p(x) = (0.75 − x)5(1 − x)11 close to its multiple roots. They show
that compensation improves the accuracy. The same results are generated by
our automatic transformation as reported in Figure 1. This figure shows the
value of p(x) close to one of its roots, before and after the automatic transforma-
tion. As expected, original results are meaningless while the transformed code
provides more accuracy and yields a smoother polynomial evaluation. Our tool
allows non expert user to obtain automatically, quickly and easily such accuracy
improvement.

Figure 2: The leftmost graph
shows p(x) around his root 1
computed in double precision
with the Horner algorithm.
The rightmost graph shows the
results of the automatically
generated code.

The next step is to take into account the second optimization criteria: the
execution time. Instruction level parallelism (ILP) or instructions like the FMA
(Fused Multiply-Add) can be exploited by modern architectures to save exe-
cution time. Because we compute the compensated terms in parallel to the
original arithmetic expressions, our transformation introduces ILP that favors a
fast execution. This reduces the over-cost of these kind of transformation. We
complete the transformation tool with the automatic analysis of this over-cost.
So these two aspects will be integrated in a future work in order to optimize
code. Time and accuracy criteria will be jointly optimized using trade-offs.
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Getting efficiency when implementing interval arithmetic computations is a
difficult task. The work presented here deals with the efficient implementation
of interval matrix multiplication on parallel architectures.

A first issue is the choice of the formulas. The main principle we adopted con-
sists in resorting, as often as possible, to optimized routines such as the BLAS3,
as implemented in Intel’s MKL for instance. To do so, the formulas chosen
to implement interval arithmetic operations are based on the representation of
intervals by their midpoint and radius. This approach has been advocated by
S. Rump [3] and used, in particular, in his implementation IntLab. It is recalled
that a panel of formulas for operations using the midpoint-radius representation
exists: exact formulas can be found in A. Neumaier [1, pp. 22–23], S. Rump [3]
gave approximate formulas with less operations, H.D. Nguyen [2] gave a choice
of formulas reaching various tradeoffs in terms of operation count and accuracy.
These formulas for the addition and multiplication of two intervals are used by
[2,3] in the classical formulas for matrix multiplication and can be expressed as
operations (addition and multiplication) of matrices of real numbers (either mid-
points or radii), S. Rump recapitulates some such matrix expressions in [4]. In
this presentation, the merits of each approach are discussed, in terms of number
of elementary operations, use of BLAS3 routines for the matrix multiplication,
and of accuracy. The comparison of the relative accuracies are based on the
assumption that arithmetic operations are implemented using exact arithmetic.
We also give a comparison of these accuracies, assuming that arithmetic oper-
ations are implemented using floating-point arithmetic.
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A second issue concerns the adaptation to the architecture. Indeed, the ar-
chitectures targeted in this study are parallel architectures such as multicores
or GPU. When implemented on such architectures, some measures such as the
arithmetic operations count are no more relevant: the measured execution times
do not relate directly to the operations count. This is explained by consider-
ations on memory usage, multithreaded computations. . . We will show some
experiments that take these architectural parameters into account and reach
good performances. We will give some tradeoffs between the memory consump-
tion and memory traffic: it can for instance be beneficial to copy (parts of) the
involved matrices in the right caches to avoid cache misses and heavy traffic.
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In a numerical calculation sometimes we need higher-than double-precision
floating-point arithmetic to allow us to be confident of a result. One alternative
is to rewrite the program to use a software package implementing arbitrary-
precision extended floating-point arithmetic such as MPFR [1] or ARPREC [2],
and try to choose a suitable precision. There are intermediate possibilities in-
termediate between the largest hardware floating-point format and the general
arbitrary-precision software which combine a considerable amount of extra pre-
cision with a relatively speaking modest factor loss in speed. An alternative
approach is to store numbers in a multiple-component format, where a number
is expressed as an unevaluated sums of ordinary floating-point words, each with
its own significand and exponent. The multiple-digit approach can represent a
much larger range of numbers, whereas the multiple-component approach has
the advantage in speed. Sometimes merely doubling the number of bits in a
double-floating-point fraction is enough, in which case arithmetic on double-
double operands would suffice.

A double-double number is an unevaluated sum of two double precision
numbers, capable of representing at least 106 bits of significand. A natural
idea is to manipulate such unevaluated sums. This is the underlying principle
of double-double arithmetic. It consisted in representing a number x as the
unevaluated sum of two basic precision floating-point numbers:

x = xh + xl

such that the significands of xh and xl do not overlap, which means here that

|xl| ≤ u |xh| ,
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where u denotes the machine epsilon; in double precision u = 2−53.
Meanwhile, the interval arithmetic is a method for finding lower and upper

bound on the value of a result by performing a computation in a manner that
preserves these bounds. Thus it allows to develop numerical methods that
yield reliable results. The infimum-supremum interval arithmetic is a method of
finding lower and upper bounds for the possible values of a result by performing
a computation on a manner which preserves these bounds, and thus developing
numerical method that yield reliable results. Denote the set of intervals {[x, x] :
x, x ∈ R} by IR. then provided 0 /∈ Y in the case of division, the result of the
power set operation X ◦ Y for X,Y ∈ IR is again an interval, and we have

X ◦ Y := [min(x ◦ y, x ◦ y, x ◦ y, x ◦ y), max(x ◦ y, x ◦ y, x ◦ y, x ◦ y)].

In this talk we will describe fast algorithms to compute interval operations
for double-double arithmetic. These algorithms are working in rounding to
nearest, so that they don’t need to take time for changing rounding mode. These
algorithms evaluate the rounding error of the approximate value in rounding
to nearest mode, and find an interval represented by double-double numbers
including the true interval.
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We consider a function f(x), for which an interval extension f (x) is defined
on [a, b]. Assume further that the intervals yi = f(xi) are defined for xi =
[xi, xi] ⊆ [a, b], i = 1, 2, . . . , n, such that

f(xi) ∈ yi for any xi ∈ xi, i = 1, 2, . . . , n. (1)

The interpolation problem for the interval-valued function f (x) requires con-
struction of an interval-valued function g(x) that satisfies

g(xi) = yi, i = 1, 2, . . . , n. (2)

The problem of determining the function g(x), under conditions (1)–(2)), will
be referred to as IIN1. Similar to the real case, this problem has no unique
solution.

Let the points xi = [xi, xi] ⊆ [a, b], i = 0, 1, . . . , n, be such that

x0 = a, xi ∩ xj = ∅ for i 6= j, xn = b, (3)

and any real restriction of the function g(x) is a polynomial of the degree n:

Rs g(x) ∈
{ ∑n

i=0 aix
i | ai ∈ R

}
. (4)

The problem (2)–(3)–(4) will be denoted as IIN2.
Let the points xi = [xi, xi] ⊆ [a, b], i = 0, 1, . . . , n, be such that

widxi = widxj for i 6= j, (5)

in particular,

xi+1 − xi = xi+2 − xi+1 for i = 0, 1, . . . , n− 2, (6)
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The problem (2)–(6) is designated as IIN3.
In our work, we have investigated the above problems and verified the results

by numerical tests. In particular, for the solution of the problem IIN2, we
propose to use the function

g(x) = Ln(x) =
n∑

k=0

yk

n∏

i6=j

x⊖ xj

xk ⊖ xj
, (7)

where “⊖” means non-standard Markov subtraction, and any real restriction of
g(x) gives a Lagrange interpolation polynomial. We have proved

Theorem. For the function Ln(x), defined by (7), the conditions (1)–(2)
are satisfied, and the following estimate is valid:

‖widLn(x)‖ ≤ M

(n+ 1)!

∥∥∥∥∥

n∏

i=0

(x− xi)

∥∥∥∥∥, (8)

where ‖[a, b]‖ = max{|a|, |b|}, M = maxx∈[a,b]

∣∣f (n+1)(x)
∣∣.

Analogous results are also obtained for interval versions of the alternative
interpolation formulae by Newton, Hermit and Chebyshev.

The interpolation interval polynomials constructed have been implemented
and integrated into a scalable program system with an appropriate interface
[1]. It enables one to compute the values of the interval interpolation formulae
by simple overloading of the corresponding interval operations to those from a
necessary interval arithmetic [2].
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Interval approach to regression analysis meets a wide variety of real world
applications and can be competitive to traditional statistical methods because
its basic hypotheses are simpler, and interval representations of uncertainty are
more natural for practitioners. Construction and analysis of linear regression

y = Xβ + ε (1)

with unknown but bounded error ε is a well-studied area. A number of authors
propose techniques for interval estimation of forecast and regression parameters,
outlier detection, and experimental design for this model (e.g., [1] and references
therein). In this work, we extend the interval approach to traditional statistical
problems such as analysis of variance (ANOVA), analysis of covariance (AN-
COVA), and time trend modeling in linear regression analysis.

ANOVA and ANCOVA refer to regression problems with qualitative predic-
tors. The former assumes all the predictors are categorical, while the latter deals
with a mixture of quantitative and qualitative predictors. Qualitative predic-
tors can be incorporated in the regression model (1) by introducing “dummy”
variables [2].

A k-level qualitative predictor requires k − 1 dummy variables for its rep-
resentation. One parameter is used to represent the overall mean effect or the
mean of some reference level, and other levels are coded by values of k− 1 vari-
ables. The coding scheme of levels is not unique, and its choice should be based
on convenience of interpretation. The most popular scheme assumes dummy
variables are binary (equal 1 for a corresponding level and 0 for others). In such
a case, the coefficients of dummy variables act as supplemental interceptors and
represent effects of switching to their levels. In statistics, coefficient estimation
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is followed by performing statistical significance tests of the estimated parame-
ters. Interpretations of diagnostic tests (F -test and t-test) rest heavily on the
model assumptions, and sometimes the results of tests are more difficult to in-
terpret if the model’s assumptions are violated [3]. For example, if the error
does not have a normal distribution, in small samples the estimated parameters
do not follow normal distributions and complicate inference.

Boundedness of the error allows one to obtain certain (not confidential) inter-
val estimates of parameters βi which represent margins of effects and intervals
of possible values of the regression output y∗:

βi =

[
min
β∈B

βi,max
β∈B

βi

]
, y∗ =

[
min
β∈B

X∗β,max
β∈B

X∗β

]
,

where B =
⋂N

i=1 {β | |Xiβ − yi| ≤ ε} , (Xi, yi) is a row in a table of observa-
tions, and ε is upper bound of the error. Certain interval estimates do not need
significance testing and may be interpreted explicitly by a researcher. In par-
ticular, testing null hypothesis of zero difference of coefficients can be replaced
by checking whether an interval parameter estimate contains zero. It is easy to
find the minimum value of the error bound ε∗ under which the samples remain
consistent with the model (B 6= ∅). The value of ε∗ is very important addi-
tional information produced in the interval approach because it characterizes
model precision and its relation to the dataset. We consider one of the simplest
ANOVA-type problems (fixed effects, one-way classification), but the proposed
technique also is applicable to more complex variants of ANOVA and ANCOVA.

Constructing a regression equation which takes into account time trends is
yet another important problem where dummy variables also are helpful. There
are many variants of this problem but the main idea and technique remains the
same. Only the structure of the regression equation and the manner of dummy-
coding of time moments may differ from one specific application to another.
Using simple data sets from [2] we show how this technique can be used for the
construction and analysis of a regression that takes into account two different
time trends.
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Impressive successes in scientific calculations are achieved by methods of
interval analysis. Nevertheless, there is a great number of developed numerical
methods and their implementation as computer programs, which either have
to be replaced almost completely by new methods to be able to benefit from
interval analysis, or have to be modified by methods post-processing results.

A method is proposed, that post-processes numerical results in order to
provide physical reliability of the obtained results along with errors estimations.
Physical reliability can be achieved by the determination of an approximate
value of the required parameter (and this value is called standard), its error
estimation (the indeterminacy interval) and by a final verification consisting in
intersecting intervals obtained by different ways.

Let us consider a problem discretized using meshes (or grids) and let us
vary the number of grid knots for different discretizations of the same problem.
There is a finite set of results, each corresponding to a different mesh. Each of
the obtained values can be considered as a multicomponent model [1], i.e. as the
sum of the required value and a few components of the error. The important
feature of such a representation is the presence of an unknown addend which
can contain the remainder term, a roundoff error and other constituents due to
both the numerical method and the concrete program realization. In particular,
the component due to roundoff errors does not tend to zero when the number
of mesh nodes increases, but it increases in most cases.

In order to estimate the error term, it is proposed to divide the problem
of the determination of the required value into two separate ones. The first
subproblem is the mathematical model identification of numerical experiment
results and the second subproblem is the test of obtained results with the help
of some known particular solutions or some other methods.
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The first subproblem does not consist in the determination of the theoret-
ical value of the required parameter. Rather, it consists in the decomposition
of the result in constituents (components) on some known beforehand or exper-
imentally determined basis. In this latter case, the components have another
meaning, because it is known that the main components of the error along with
a constant are not included in the unknown addend. This first subproblem can
be solved approximately by repeated numerical filtration. Filtration consists
in eliminating of error component by means of linear or nonlinear combination
of some results (as in Romberg, Aitken, Winn and other methods). Filtration
formula is determined by the type of basis and the rule of grid knots choice.
Filtration provides an approximate value of the required parameter and error es-
timation. In this work, we propose to separate the determination of the standard
value and the estimation of the error. For this purpose, another filtration is con-
ducted first. It proceeds by eliminating the standard value from the equations
taken in pairs, somehow as in Gaussian elimination. Then, further filtrations
yield estimations of the error independently of the standard value and choice
of the minimal one from the set of error estimations, or a combination of the
ones nearest to the minimum. Then the determination of the standard can be
obtained by the filtration of the original system up to the number of the grid
knots and filtration number corresponding to the minimum.

The second subproblem is testing. If some particular exact solution is known,
this is the verification of whether it belongs to the obtained interval. It can also
consists in comparing with an approximate solution, that is obtained indepen-
dently by another numerical method: in this case, verification is obtained by
intersecting the intervals centered in the approximate solution and of radius the
error. This method based on additional information does not influence the for-
merly obtained estimations, as they were obtained independently by filtration.
It only confirms them or refutes them. The theoretical estimation of reliabil-
ity (the confidence probability) of joint result of these two problems decision is
obtained [2].
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