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A numerical verification method 

 for solutions to systems 

 of elliptic partial differential equations 



We consider systems of elliptic partial differential 

equations: 

Here 

is bounded polygonal domain in       . 

are real parameters. 

A mapping  

1. Introduction 



We denote     -inner product and       -inner 

product as  

. 

1. Introduction 



For the system     , we have weak form: 

1. Introduction 



When      is known function, equation (3) has unique solution.   

[1] Y. Watanabe, A Numerical Verification   Method for Two-

Coupled Elliptic Partial Differential Equation, Japan Jurnal of 

Industrial and Applied Mathematics, 26 (2009), pp.233-247 

Then,      is presented by                 ,  

where                                   is a solution operator of (3). 

Using this and (2), it follows 

where                                                                     . 

Y. Watanabe has studied this type of equation (3) and (4)  

by Nakao’s theory[1].  

1. Introduction 



Our purpose is the proof of the uniqueness and 

existence of the solution for equation (3) and (4) 

using the Newton-Kantorovich’s theorem and the 

operator norm                 . 
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3.OPERATOR    AND ESTIMATION OF THE NORM 

Linear operator and 

embedding identity operator 

Then, equation (3) transform as following. 

is defined as 



If     is not an eigenvalue of the Laplace operator, 

there exists the solution operator B. 

Thus, we define  

3.OPERATOR    AND ESTIMATION OF THE NORM 



Let      and     be Banach space. The set of bounded linear 

operators is denote by                 with operator norm 

The norm of                          is defined as 

Let                 be the topological dual space of              . 

3.OPERATOR    AND ESTIMATION OF THE NORM 



We define the linear operator as 

． 

,  As a property of the operator      for all  

． 
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We consider an eigenvalue problem: 

(5) 

Let      be positive real number satisfying 

 is satisfied the equation (5) 

3.OPERATOR    AND ESTIMATION OF THE NORM 



Then, the operator norm of           is estimated by 

(6) 

3.OPERATOR    AND ESTIMATION OF THE NORM 



If we get exactly an eigenvalue of the Laplace operator,  

we have    . Thus, we can estimate of operator norm of         .  

 

We transform a eigenvalue problem (5) into 

This equation is an eigenvalue problem of the Laplace operator. 

A verified evaluation for eigenvalues of the Laplace 

operator has been shown by X. Liu and S. Oishi[2]． 
[2] X. Liu and S. Oishi, Verified eigenvalue evaluation for  

elliptic operator on arbitrary polygonal domain, in preparation 

3.OPERATOR    AND ESTIMATION OF THE NORM 



Let          be the                  constant satisfying 

Thus, we have 

． (7) 

． 

3.OPERATOR    AND ESTIMATION OF THE NORM 



Using equations (6) and (7), we estimate the operator norm 

of      as follows: 

3.OPERATOR    AND ESTIMATION OF THE NORM 
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where             assume                  different of     on     .  

4.ERROR ESTIMATION OF AN EQUATION (2) 

The linear operator and 

The non-linear operator is defined by 

． 

Let             be a operator on              into                 as 

, 



The                derivative of      at                       denotes 

(8) 

Let       be a  nonlinear operator on              into                . 

4.ERROR ESTIMATION OF AN EQUATION (2) 

． 



be an closed ball. Let                         be an open ball. 

for the certain positive    .Then, let 

If                    holds, then there is a solution                     of 

Furthermore, the solution     is unique in                 . 

Theorem1 (Newton-Kantorovich’s theorem) 
4.ERROR ESTIMATION OF AN EQUATION (2) 

Assuming that the                derivative            is nonsingular and 

satisfies 

We assume that for a certain positive    , the following holds: 

satisfying 



We define three constant: 

We have 

If you get three constants                       , then you can verify  

Newton-Kantorovich’s theorem. 

4.ERROR ESTIMATION OF AN EQUATION (2) 

. 



Where             . We define the    -inner product and   -norm as 

4.ERROR ESTIMATION OF AN EQUATION (2) 

Let       be a  linear operator on              into                ,  

. 

, 

. 

For                      , we have following the property. 



Then, we estimate as 

We denote the calculation of an eigenvalue problem:   

4.ERROR ESTIMATION OF AN EQUATION (2) 

(9) 

. 

. 



4.ERROR ESTIMATION OF AN EQUATION (2) 

Let        denote a finite dimensional subspace of              .  

An eigenvalue        is satisfying the eigenvalue problem:  

, 

and we wrote                                                  to eigenvalues. 



4.ERROR ESTIMATION OF AN EQUATION (2) 

We determine the constant     so that  

. 

We assume that for a certain positive       , the following holds: 

 



4.ERROR ESTIMATION OF AN EQUATION (2) 

Then,  

. 

Thus, we have 

. (10) essinf 



We define the d-inner product and d-norm as 

4.ERROR ESTIMATION OF AN EQUATION (2) 

. 

, 

, 

Thus, 

where                                                                     . 

(11) 



There exist positive constants          satisfying 

4.ERROR ESTIMATION OF AN EQUATION (2) 

An orthogonal projection                                     is defined by 

. 

for  . 

Then, we estimate 

. (12) 



4.ERROR ESTIMATION OF AN EQUATION (2) 

The following remark is obtained a combination of (10)-(12) and 

the proof of the Liu-Oishi’s theorem[2]. 

Remark 1 

then the eigenvalue        is satisfying 

If  

, 

. 



4.ERROR ESTIMATION OF AN EQUATION (2) 

If we get exactly an eigenvalue      , we have   

 

where 

. 

, 



satisfying                                 .   

The calculation method of          was proposed by A. Takayasu, 

X. Liu and S. Oishi[2]. 

[2]A. Takayasu, X. Liu and S. Oishi, Verified computations to 

     semilinear elliptic boundary value problems on arbitrary polygonal domains, 

     to appear. 

Where 

:  is piecewise-descontinuous on the triangle element, 

4.ERROR ESTIMATION OF AN EQUATION (2) 

:The smoothing function       is defined by the  

 Raviart-Thomas finite element 



        is satisfied 

Here,  ． 

Then,  we have 

． 

4.ERROR ESTIMATION OF AN EQUATION (2) 

Therefore, one can put                       .    
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Let                        be approximate solutions. 

5.ERROR ESTIMATION OF AN EQUATION (3) 

 

Then, we estimate 

where                                  . 



We would like to consider the system of elliptic partial 

differential equations: 

where  

． 

6.COMPUTATIONAL RESULTS 

, 

, 

and maximum mesh size  



(a) approximate solution (b) approximate solution 

(c) approximate solution (d) approximate solution 
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(a) approximate solution (b) approximate solution 

(c) approximate solution (d) approximate solution 

6.COMPUTATIONAL RESULTS 

We can calculate of arbitrary polygonal domain!! 



Then， we have 

Therefore, the uniqueness and existence  

of the local solution is proved.     
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