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I would like to present:

• new program for visualization of AE-solution sets,

• boundary intervals method as a base of this program.



Introduction



Definition of AE-solution set

Let us be given

A, A∀,A∃ ∈ IR
m×n,

A = A∀ +A∃,
∀(i, j) A∀

ij ·A∃
ij = 0,

b, b∀, b∃ ∈ IR
m,

b = b∀ + b∃,
(∀i) b∀i · b∃i = 0.

We will refer to the set

ΞAE = {x ∈ R
n | (∀A′ ∈ A∀)(∀b′ ∈ b∀)(∃A′′ ∈ A∃)(∃b′′ ∈ b∃)

(A′ +A′′)x = b′ + b′′}
as AE-solution set for the interval linear system Ax = b.
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Definitions and theory of AE-solution sets for interval systems

of linear equations was proposed by Sergey P. Shary.

(See e.g.

S.P. Shary, A new technique in systems analysis

under interval uncertainty and ambiguity,

Reliable Computing, 8 (2002), No. 5, pp. 321–419,

http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf)
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http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf


Particular cases of AE-solution sets

The united solution set

Ξuni = {x ∈ R
n | (∃A ∈ A)(∃b ∈ b) (Ax = b)},

the tolerable solution set

Ξtol = {x ∈ R
n | (∀A ∈ A)(∃b ∈ b) (Ax = b)},

and the controllable solution set

Ξctl = {x ∈ R
n | (∀b ∈ b)(∃A ∈ A) (Ax = b)}

are particular cases of the AE-solution sets.
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Geometric properties of AE-solution set

The intersection of an AE-solution set with a closed orthant is

a convex polyhedron determined by system of linear inequalities
⎧⎪⎨
⎪⎩
−A′x � −b∃ − b

∀
,

A′′x � b
∃ + b∀,

where

A′
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
A∀ +A∃

)
ij

for xj < 0,(
A∀ +A∃)

ij
otherwise,

A′′
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
A∀ +A∃)

ij
for xj < 0,(

A∀ +A∃
)
ij

otherwise.

The whole AE-solution set is a polyhedral set.

It may be nonconvex, nonconnect, unbounded.
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Problem

Given A∀, A∃, b∀, b∃,
with n ∈ {2,3}, m ∈ N,

we have to “see” AE-solution set ΞAE.
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Known programs for visualization of AE-solution sets

• Siegfried Rump, Intlab function plotlinsol in MATLAB

• Walter Krämer and Gregor Paw, Java applet

• Walter Krämer and Sven Braun, package in Maple

• Evgenija Popova, online programs for united solution
set, AE-solution set and parametric AE-solution set

• Irene Sharaya, file-program in PostScript
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http://www.ti3.tu-harburg.de/rump/intlab/
http://sci-gems.math.bas.bg:8080/jspui/bitstream/10525/357/1/sjc035-vol1-num4-2007.pdf
http://sci-gems.math.bas.bg:8080/jspui/bitstream/10525/357/1/sjc035-vol1-num4-2007.pdf
http://cose.math.bas.bg/webComputing
http://www.nsc.ru/interval/Programing


Drawbacks of these visualization programs

author(s) solution
type

size of
system

process
unbounded

sets

process
thin
sets

Rump Z. USS 3× 3 − +
Krämer W.,
Paw G.

USS 3× 3 ∓ ∓

Krämer W.,
Braun S.

USS 3× 3 ∓ ∓

Popova E.D. USS 3× 3 ∓ −
Popova E.D. AEss 2× 2 ∓ −
Sharaya I.A. AEss 2× 2 + +
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New program

for visualization

of AE-solution sets



This is a package in Matlab language

with subpackages for 2D and 3D cases.
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2D-case. Notation

pok – intersection of ΞAE with k-th orthant
(piece in orthant),

� – vertex of po,

– edge of po,
– interior of po,
– coordinate axis.
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Capability for 2D tasks

1) arbitrary quantifiers

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

Example:

A =

⎛
⎝ 1 0
[−1,1] [1,3]

⎞
⎠, b =

⎛
⎝[−3,3]

[2,3]

⎞
⎠,

solution type —
EE E
EA E
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Capability for 2D tasks

2) rectangular matrix

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Example ( 1000 rows ):

m=1000,
Ai: =

(
sin πi

2m, cos πi
2m

)
,

Ai: = −Ai,
bi = [−2,1],

solution type — tolerable.
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Capability for 2D tasks

2) rectangular matrix

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Example ( 1 row ):

A = ([−1,1][−1,1]),
b = ([−1,1]),

solution type — tolerable.
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Capability for 2D tasks

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3) drawing thin sets (vertices & edges of pok) and
distinguishing between thin sets and sets with

nonempty interior (due to
green interior – compare this
example with previous one)

Example ( bound of rhomb ):

A =

⎛
⎝[−1,1] [−1,1]
[−1,1] [−1,1]

⎞
⎠, b =

⎛
⎝[−1,1]

[1,2]

⎞
⎠,

solution type —
AA E
EE E
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Capability for 2D tasks

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

4) auto-choose of Drawing Box
(even for unbounded sets)

Example ( unbounded set ):

A =

⎛
⎝[−1,1] [−1,1]

−1 [−1,1]

⎞
⎠,

b =

⎛
⎝ 1
[−2,2]

⎞
⎠,

solution type — united.
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Capability for 2D tasks

5) distinguishing between bounded and unbounded sets

(unbounded set has points on the border of Drawing Box)

Examples:

segment ray straight line

polytope polyhedron
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3D-case. Notation

pok – intersection of ΞAE with k-th orthant
(piece in orthant),

� – vertex of po,

– edge of po,
– real facet,
– cut facet,
– prescribed facet.
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Capability for 3D tasks

1) availability of Matlab tools (zoom, rotation, light, ...)

Example (Neumaier star):

A =

⎛
⎜⎜⎝

3.5 [0,2] [0,2]
[0,2] 3.5 [0,2]
[0,2] [0,2] 3.5

⎞
⎟⎟⎠, b =

⎛
⎜⎜⎝
[−1,1]
[−1,1]
[−1,1]

⎞
⎟⎟⎠,

solution type — united.

26



Capability for 3D tasks

2) arbitrary quantifiers

Example (diamond):

A =

⎛
⎜⎜⎝

3.5 [0,2] [0,2]
[0,2] 3.5 [0,2]
[0,2] [0,2] 3.5

⎞
⎟⎟⎠, b =

⎛
⎜⎜⎝
[−1,1]
[−1,1]
[−1,1]

⎞
⎟⎟⎠,

solution type — tolerable .
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Capability for 3D tasks

3) rectangular matrix

Example ( 1 row ):

A = ([−1,1][−1,1][−1,1]),
b = ([−1,1]),

solution type — tolerable.
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Capability for 3D tasks

3) rectangular matrix

Example ( 100 rows ):

k = 10,
α, β = π

4k : π
2k : (2k−1)π

4k ,

Ai: =
(
cos(α) cos(β), sin(α) cos(β), sin(β)

)
,

Ai: = −A,

bi = [−2,1],

solution type — tolerable.
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Capability for 3D tasks

4) drawing thin sets (input argument ‘OrientPoints’
must be equal 1)

Example:

A b⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[−1,1] 0 0
0 [−1,1] 0
0 0 [−1,1]
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

[−1,2]
[−1,2]
[−1,2]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

solution type — united.
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Capability for 3D tasks

5) auto-choose of Drawing Box (even for unbounded sets)

Example:

A b⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[−1,1] 0 0
0 [−1,1] 0
0 0 [−1,1]
1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

[−1,2]
[−1,2]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

solution type — united.
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Capability for 3D tasks

6) distinguishing between bounded and unbounded sets

Main characteristic — unbounded set has points
on the facets of auto-choosed Drawing Box,

complementary characteristics —
• cut facet has not vertices,
• 2 dimensional cut facet is red.

(Compare two previous examples.)
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Capability for 3D tasks

6) transparency
always for cut and prescribed facets
and as input argument for real facets

Example (R3 with cave ):

A = ([−1,1][−1,1][−1,1]),
b = [1,2],

solution type — united.
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Capability for 3D tasks

7) Prescribed Box as optional input argument

Example (R3 with cave):

A = ([−1,1][−1,1][−1,1]),
b = [1,2],

solution type — united,

Prescribed Box —
([0,1.5] [0,1.5] [0,1.5]).
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The codes of the presented program

are open and available from

http://www.nsc.ru/interval/Programing/
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Basic ideas of the program:

How to draw the polytope?
How to draw thin sets?
How to draw unbounded sets?
How to find ordered list of vertices for polytope,
wich is described as a system of 2D linear inequalities?
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How to draw the polytope?

To use Matlab functions fill and fiil3.

(They draw 2D polytope by ordered list of its vertices

in R
2 and R

3 respectively.)
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How to draw thin sets?

To draw 1D and 2D facets by functions fill and fill3

and to draw vertices using functions plot or scatter.
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How to draw unbounded sets?

To find �
(⋃
i
vertices(po)i

)
,

to increase the received interval,

and to use the increased interval as a Cut Box.
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How to find ordered list of vertices for polytope,

wich is described as a system of 2D linear inequalities?

To use a boundary interval method.
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Boundary interval method



Boundary interval method ‘was born’ this year.

It is assigned for visualization of
solution set to system of linear inequalities,
solution set to system of two-sided linear inequalities,
and AE-solution set to system of interval linear equations.

Basic terms of the method are
boundary interval
and boundary interval matrix.
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Boundary interval (definition)

Let us be given the system of linear inequalities Ax � b with

A ∈ Rm× 2 , b ∈ Rm. If the set {x | (Ai:x = bi)&(Ax � b) } for

i ∈ {1, . . . ,m} is not empty, we call it boundary interval.

A boundary interval, as a set of points on the plane, may be

a single point, a segment, a ray, and a straight line.
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Boundary interval (How to evaluate?)

For i

1) go to inner coordinate of straight line Ai:x = bi,

i.e. replace x by
bi

||Ai:||2
A�
i: + (−Ai2, Ai1)

�t,

3) evaluate interval [t, t] of inner coordinate t

from 1D system of linear inequalities,

4) rewrite points t and t,
in outer coordinates.
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Boundary interval (How to write it?)

( ∗ ∗ ∗ ∗ ∗ )

︸ ︷︷ ︸ ︸ ︷︷ ︸
begining end

inequality
number∈ ∈ ∈

R
2

R
2

N
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Boundary interval matrix

(What knowledge about solution set it gives?)

( ∗ ∗ ∗ ∗ ∗ )
( ∗ ∗ ∗ ∗ ∗ )

. . .

( ∗ ∗ ∗ ∗ ∗ )
( ∗ ∗ ∗ ∗ ∗ )

−→
• emptiness
• boundedness
• ordered list

of vertices
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THANK YOU


