Boundary intervals and visualization of AE-solution sets for interval systems of linear equations

Irene A. Sharaya

Institute of Computational Technologies SB RAS Novosibirsk, Russia

I would like to present:

• new program for visualization of AE-solution sets,

• boundary intervals method as a base of this program.

Introduction

Definition of AE-solution set

Let us be given

$$egin{aligned} oldsymbol{A}, oldsymbol{A}^orall, oldsymbol{A}^{oll} oldsymbol{A}^{oll} oldsymbol{A}^{oll} oldsymbol{A}^{oll} oldsymbol{A}^{oll$$

We will refer to the set

$$\Xi_{AE} = \{ x \in \mathbb{R}^n \mid (\forall A' \in \mathbf{A}^{\forall})(\forall b' \in \mathbf{b}^{\forall})(\exists A'' \in \mathbf{A}^{\exists})(\exists b'' \in \mathbf{b}^{\exists})$$

$$(A' + A'')x = b' + b'' \}$$

as AE-solution set for the interval linear system Ax = b.

Definitions and theory of AE-solution sets for interval systems of linear equations was proposed by Sergey P. Shary.

(See e.g.

S.P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing, 8 (2002), No. 5, pp. 321–419, http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf)

Particular cases of AE-solution sets

The united solution set

$$\Xi_{uni} = \{x \in \mathbb{R}^n \mid (\exists A \in A)(\exists b \in b) \ (Ax = b)\},$$

the tolerable solution set

$$\Xi_{tol} = \{x \in \mathbb{R}^n \mid (\forall A \in \mathbf{A})(\exists b \in \mathbf{b}) \ (Ax = b)\},$$

and the controllable solution set

$$\Xi_{ctl} = \{x \in \mathbb{R}^n \mid (\forall b \in \boldsymbol{b})(\exists A \in \boldsymbol{A}) \ (Ax = b)\}$$

are particular cases of the AE-solution sets.

Geometric properties of AE-solution set

The intersection of an AE-solution set with a closed orthant is a convex polyhedron determined by system of linear inequalities

$$\begin{cases}
-A'x \leqslant -\underline{b}^{\exists} - \overline{b}^{\forall}, \\
A''x \leqslant \overline{b}^{\exists} + \underline{b}^{\forall},
\end{cases}$$

where

$$A'_{ij} = \begin{cases} \left(\overline{A}^{\forall} + \underline{A}^{\exists} \right)_{ij} & \text{for } x_j < 0, \\ \left(\underline{A}^{\forall} + \overline{A}^{\exists} \right)_{ij} & \text{otherwise,} \end{cases} \qquad A''_{ij} = \begin{cases} \left(\underline{A}^{\forall} + \overline{A}^{\exists} \right)_{ij} & \text{for } x_j < 0, \\ \left(\overline{A}^{\forall} + \underline{A}^{\exists} \right)_{ij} & \text{otherwise.} \end{cases}$$

The whole AE-solution set is a polyhedral set.

It may be nonconvex, nonconnect, unbounded.

Problem

Given $A^{\forall}, A^{\exists}, b^{\forall}, b^{\exists},$ with $n \in \{2,3\}, m \in \mathbb{N},$

we have to "see" AE-solution set Ξ_{AE} .

Known programs for visualization of AE-solution sets

- Siegfried Rump, Intlab function plotlinsol in MATLAB
- Walter Krämer and Gregor Paw, Java applet
- Walter Krämer and Sven Braun, package in Maple
- Evgenija Popova, online programs for united solution set, AE-solution set and parametric AE-solution set
- Irene Sharaya, file-program in PostScript

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3 × 3	_	+
Krämer W., Paw G.	USS	3 × 3	干	干
Krämer W., Braun S.	USS	3 × 3	干	Ŧ
Popova E.D.	USS	3 × 3	Ŧ	_
Popova E.D.	AEss	2×2	Ŧ	_
Sharaya I.A.	AEss	2×2	+	+

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3 × 3		+
Krämer W., Paw G.	USS	3 × 3	干	
Krämer W., Braun S.	USS	3 × 3	干	
Popova E.D.	USS	3 × 3	Ŧ	_
Popova E.D.	AEss	2×2	Ŧ	_
Sharaya I.A.	AEss	2×2	+	+
				

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3 × 3		+
Krämer W., Paw G.	USS	3 × 3	干	干
Krämer W., Braun S.	USS	3 × 3	干	干
Popova E.D.	USS	3 × 3	Ŧ	_
Popova E.D.	AEss	2 × 2	Ŧ	_
Sharaya I.A.	AEss	2 × 2	+	+

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3×3		+
Krämer W., Paw G.	USS	3 × 3	干	干
Krämer W., Braun S.	USS	3 × 3	干	干
Popova E.D.	USS	3×3	Ŧ	_
Popova E.D.	AEss	2 × 2	Ŧ	_
Sharaya I.A.	AEss	2×2	+	+

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3 × 3	_	+
Krämer W., Paw G.	USS	3 × 3	干	
Krämer W., Braun S.	USS	3 × 3	干	Ŧ
Popova E.D.	USS	3 × 3	干	_
Popova E.D.	AEss	2×2	干	_
Sharaya I.A.	AEss	2×2	+	+
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·	

author(s)	solution type	size of system	process unbounded sets	process thin sets
Rump Z.	USS	3 × 3		+
Krämer W., Paw G.	USS	3 × 3	干	干
Krämer W., Braun S.	USS	3 × 3	干	干
Popova E.D.	USS	3 × 3	Ŧ	
Popova E.D.	AEss	2×2	Ŧ	
Sharaya I.A.	AEss	2×2	+	+

New program for visualization of AE-solution sets

This is a package in Matlab language with subpackages for 2D and 3D cases.

2D-case. Notation

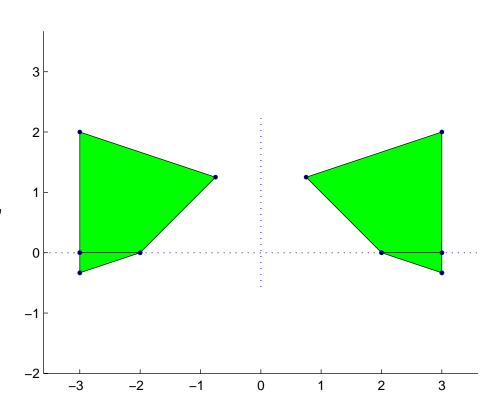
- po_k intersection of Ξ_{AE} with k-th orthant (piece in orthant),
 - vertex of po,
 - / edge of po,
 - interior of po,
 - coordinate axis.

1) arbitrary quantifiers

Example:

$$A = \begin{pmatrix} 1 & 0 \\ [-1,1] & [1,3] \end{pmatrix}, b = \begin{pmatrix} [-3,3] \\ [2,3] \end{pmatrix},$$

solution type — EE E E EA E



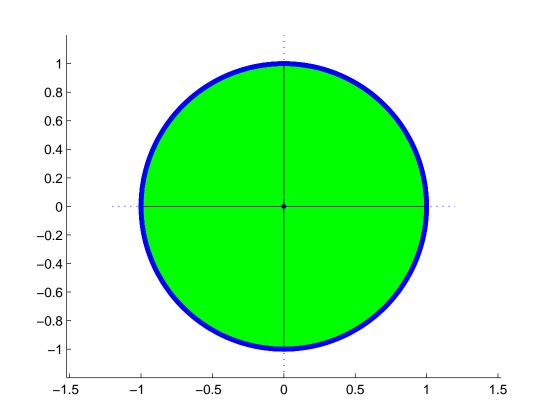
2) rectangular matrix

Example (1000 rows):

m=1000,

$$\overline{A}_{i:} = \left(\sin \frac{\pi i}{2m}, \cos \frac{\pi i}{2m}\right),$$

 $\underline{A}_{i:} = -\overline{A}_{i},$
 $b_{i} = [-2, 1],$



2) rectangular matrix

Example (1 row):

$$A = ([-1, 1][-1, 1]),$$

 $b = ([-1, 1]),$

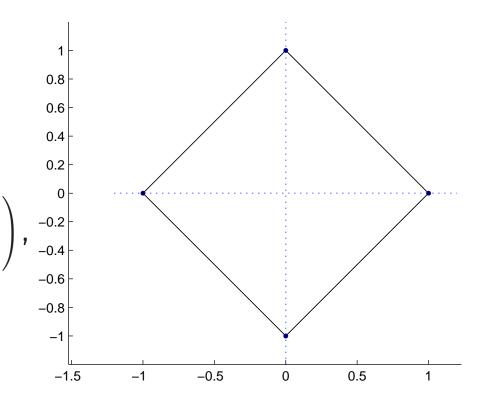


3) drawing thin sets (vertices & edges of po_k) and distinguishing between thin sets and sets with

nonempty interior (due to green interior – compare this example with previous one)

Example (bound of rhomb):

$$A = \begin{pmatrix} \begin{bmatrix} -1,1 \end{bmatrix} & \begin{bmatrix} -1,1 \end{bmatrix} \\ \begin{bmatrix} -1,1 \end{bmatrix} \end{pmatrix}, \ b = \begin{pmatrix} \begin{bmatrix} -1,1 \end{bmatrix} \\ \begin{bmatrix} 1,2 \end{bmatrix} \end{pmatrix},$$
 solution type —
$$\begin{matrix} AA & E \\ EE & E \end{matrix}$$



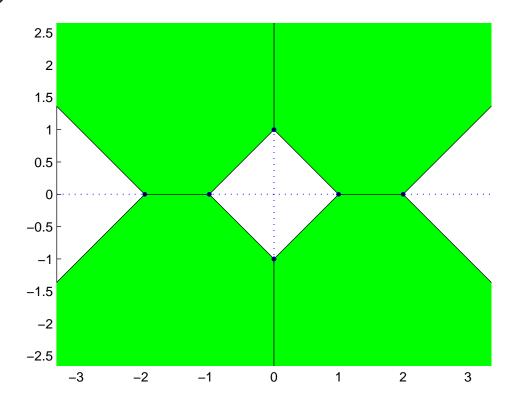
4) auto-choose of Drawing Box

(even for unbounded sets)

Example (unbounded set):

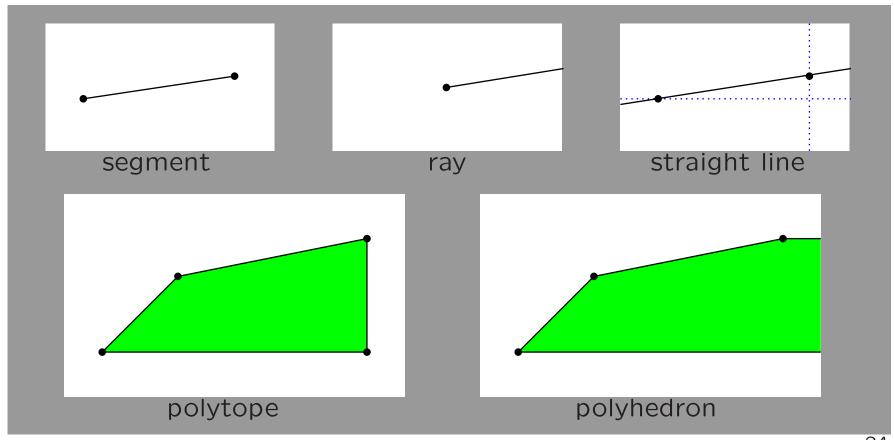
$$A = egin{pmatrix} [-1,1] & [-1,1] \ -1 & [-1,1] \end{pmatrix}, \ b = egin{pmatrix} 1 \ [-2,2] \end{pmatrix},$$

solution type — united.



5) distinguishing between bounded and unbounded sets (unbounded set has points on the border of Drawing Box)

Examples:



3D-case. Notation

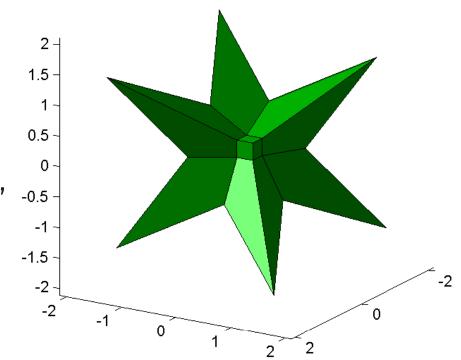
- po_k intersection of Ξ_{AE} with k-th orthant (piece in orthant),
 - vertex of po,
 - / edge of po,
 - real facet,
 - cut facet,
 - prescribed facet.

1) availability of Matlab tools (zoom, rotation, light, ...)

Example (Neumaier star):

$$A = \begin{pmatrix} 3.5 & [0,2] & [0,2] \\ [0,2] & 3.5 & [0,2] \\ [0,2] & [0,2] & 3.5 \end{pmatrix}, b = \begin{pmatrix} [-1,1] \\ [-1,1] \\ [-1,1] \end{pmatrix}, \begin{bmatrix} 0.5 \\ 0.5 \\ -1. \end{bmatrix}$$

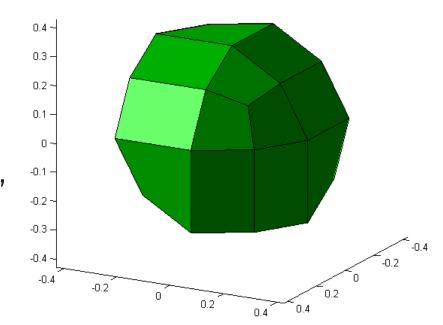
solution type — united.



2) arbitrary quantifiers

Example (diamond):

$$A = \begin{pmatrix} 3.5 & [0,2] & [0,2] \\ [0,2] & 3.5 & [0,2] \\ [0,2] & [0,2] & 3.5 \end{pmatrix}, b = \begin{pmatrix} [-1,1] \\ [-1,1] \\ [-1,1] \end{pmatrix},$$

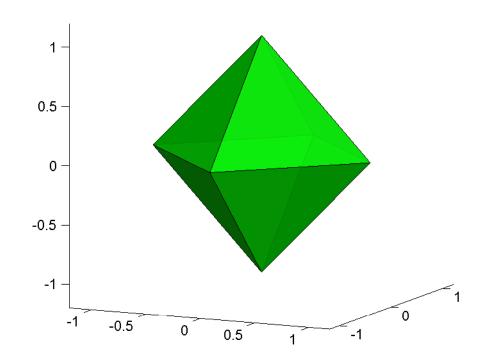


3) rectangular matrix

Example (1 row):

$$A = ([-1, 1][-1, 1][-1, 1]),$$

 $b = ([-1, 1]),$



3) rectangular matrix

Example (100 rows):

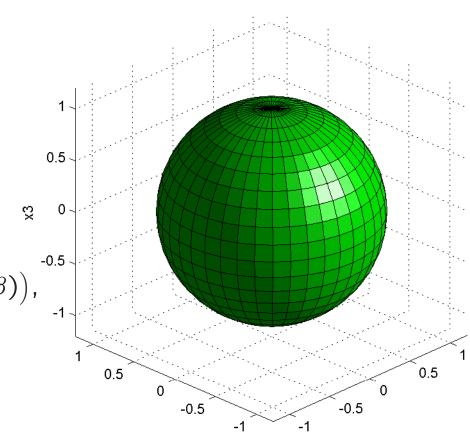
$$k = 10$$
,

$$\alpha, \beta = \frac{\pi}{4k} : \frac{\pi}{2k} : \frac{(2k-1)\pi}{4k},$$

 $\overline{A}_{i:} = (\cos(\alpha)\cos(\beta), \sin(\alpha)\cos(\beta), \sin(\beta)),$

$$\underline{A}_{i:} = -\overline{A},$$

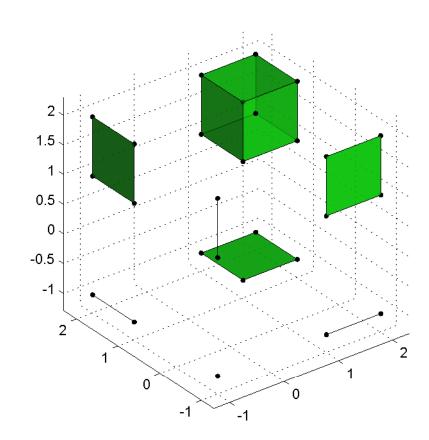
$$b_i = [-2, 1],$$



4) drawing thin sets (input argument 'OrientPoints' must be equal 1)

Example:

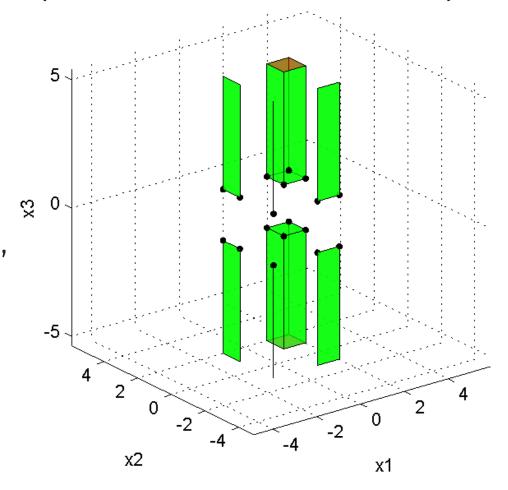
solution type — united.



5) auto-choose of Drawing Box (even for unbounded sets)

Example:

solution type — united.



6) distinguishing between bounded and unbounded sets

Main characteristic — unbounded set has points on the facets of auto-choosed Drawing Box,

complementary characteristics —

- cut facet has not vertices,
- 2 dimensional cut facet is red.

(Compare two previous examples.)

6) transparency

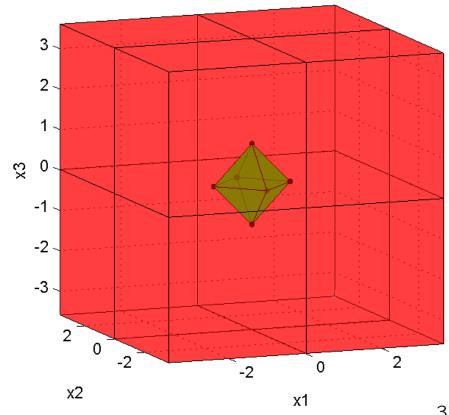
always for cut and prescribed facets and as input argument for real facets

Example (\mathbb{R}^3 with cave):

$$A = ([-1, 1][-1, 1][-1, 1]),$$

 $b = [1, 2],$

solution type — united.



7) Prescribed Box as optional input argument

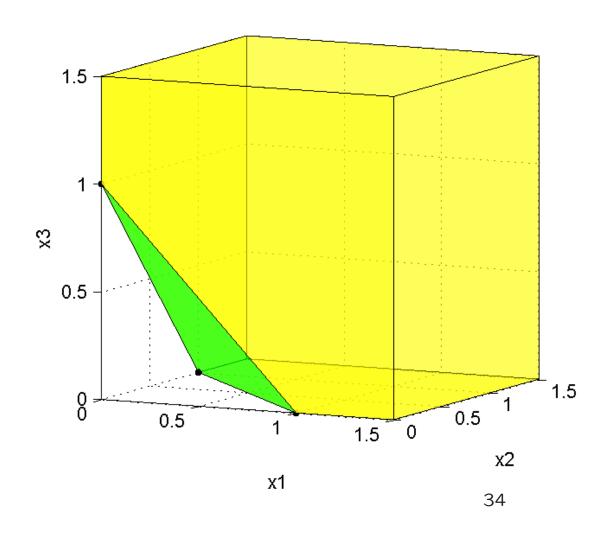
Example (\mathbb{R}^3 with cave):

$$A = ([-1, 1][-1, 1][-1, 1]),$$

 $b = [1, 2],$

solution type — united,

Prescribed Box — ([0,1.5] [0,1.5]).



The codes of the presented program are open and available from

http://www.nsc.ru/interval/Programing/

Basic ideas of the program:

How to draw the polytope?

How to draw thin sets?

How to draw unbounded sets?

How to find ordered list of vertices for polytope, wich is described as a system of 2D linear inequalities?

How to draw the polytope?

To use Matlab functions fill and fiil3.

(They draw 2D polytope by ordered list of its vertices in \mathbb{R}^2 and \mathbb{R}^3 respectively.)

How to draw thin sets?

To draw 1D and 2D facets by functions fill and fill3 and to draw vertices using functions plot or scatter.

How to draw unbounded sets?

To find $\Box(\bigcup \text{vertices}(\text{po})_i)$, to increase the received interval, and to use the increased interval as a Cut Box.

How to find ordered list of vertices for polytope, wich is described as a system of 2D linear inequalities?

To use a boundary interval method.

Boundary interval method

Boundary interval method 'was born' this year.

It is assigned for visualization of solution set to system of linear inequalities, solution set to system of two-sided linear inequalities, and AE-solution set to system of interval linear equations.

Basic terms of the method are boundary interval and boundary interval matrix.

Boundary interval (definition)

Let us be given the system of linear inequalities $Ax \geqslant b$ with $A \in \mathbb{R}^{m \times 2}$, $b \in \mathbb{R}^m$. If the set $\{x \mid (A_i : x = b_i) \& (Ax \geqslant b)\}$ for $i \in \{1, \dots, m\}$ is not empty, we call it *boundary interval*.

A boundary interval, as a set of points on the plane, may be a single point, a segment, a ray, and a straight line.

Boundary interval (How to evaluate?)

For i

- 1) go to inner coordinate of straight line $A_{i:}x=b_i$, i.e. replace x by $\frac{b_i}{||A_{i:}||_2}A_{i:}^\top+(-A_{i2},A_{i1})^\top t,$
- 3) evaluate interval $[\underline{t}, \overline{t}]$ of inner coordinate t from 1D system of linear inequalities,
- 4) rewrite points \underline{t} and \overline{t} , in outer coordinates.

Boundary interval (How to write it?)

$$(* * * * * * *)$$

$$\longrightarrow \qquad \text{inequality}$$

$$\text{begining} \qquad \text{end} \qquad \text{number}$$

$$\stackrel{\cap}{\mathbb{R}^2} \qquad \stackrel{\cap}{\mathbb{R}^2} \qquad \stackrel{\square}{\mathbb{R}^2}$$

Boundary interval matrix (What knowledge about solution set it gives?)

THANK YOU