Logarithmic Scaling of Critical Collapse

S.A. Dyachenko^{1,2}, <u>P.M. Lushnikov^{3*}</u>, N. Vladimirova³

¹Landau Institute of Theoretical Physics RAS, Chernogolovka, Russia ²Novosibirsk State University, Novosibirsk, Russia ³Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA *e-mail address: plushnik@math.unm.edu

We study the collapse of the nonlinear Schrodinger equation (NLS) and the Keller-Segel equation (KS) in critical case of dimension two. The scaling of self-similar solutions near collapse point has $(t_0-t)^{1/2}$ scaling law for both NLS and KS with the logarithmic modifications. We develop a perturbation theory for these modifications beyond leading order and perform detailed comparison with simulations.