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Subject of the talk

I We will consider a soliton of the nonlinear Schrödinger
(NLS) equation.

I Our goal: to control parameters of the soliton.
I The following two approaches will be discussed:

1. Autoresonance
2. Scattering on resonance
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I We consider a nonlinear Schrödinger equation (NLS):

iut +
1
2

uxx + |u|2u = εf (x, t) (ε� 1)

which has a solitary wave solution:

u(x, t) =
A

ch A(x − ξ)
eiΦ, Φ = V (x − ξ) + θ.

I For unperturbed soliton (ε = 0):

ξ = V t + ξ0, θ = ω t + θ0, ω =
A2 + V2

2
.

I We should find perturbations εf suitable for control of the
amplitude A and/or velocity V of the soliton.
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I The perturbation εf (x, t) is not supposed to be localized, so
there is a non-localized background part χ(x, t) ∼ ε of the
solution:

u(x, t) = ϕ(x, t) + χ(x, t),

which approximately obeys a linear equation

iχt +
1
2
χxx = εf (x, t),

while the localized part ϕ(x, t) satisfies

iϕt +
1
2
ϕxx + |ϕ|2ϕ = −χ∗ϕ2

− 2χ|ϕ|2.

I Unlike the original NLS equation, the perturbation is
localized on soliton here, so it never becomes larger than
the perturbed wave itself.
(This procedure was suggested by E.M. Maslov, IZMIRAN,
Moscow).
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I Variational principle:

δ

∫ ∫
L dx dt = 0,

L =
1
2

[
i(ϕϕ∗t − ϕ

∗ ϕt) + |ϕx|
2
− |ϕ|4

]
− |ϕ|2(ϕχ∗ + ϕ∗χ).

I Adiabatic approximation: perturbation causes only a slow
evolution of soliton parameters.

I Reduced variational principle

δ

∫
L dt = 0,

L = A
(
2θt − 2Vξt + V2

−
1
3

A2
)
− A3

(
I eiθ + I∗ e−iθ

)
,

where

I(A,V, ξ, t) =

∫
∞

−∞

e i V s

ch3 A s
χ∗(s + ξ, t) ds.
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One phase perturbation

I Consider the following simple perturbation:

εf = εeiψ(t),

ψ(t) =

∫
Ω(t)dt, Ω(t) = Ω0 + α t.

I Frequency Ω may change in time.
I Variational equations (assuming V = 0 for now):

At = − ε
πA2

2Ω
sin δ,

δt =
A2

2
−Ω − ε

πA
Ω

cos δ,

where δ = θ − ψ is the soliton-perturbation phase
mismatch.
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Autoresonance – locking of phase oscillations

Phase plane

Autoresonant
trajectory

t

Potential energy

Separatrix

I Nonlinear pendulum:

δtt + επA sin δ + α ≈ 0.

I A ≈ const on one period of phase
oscillations ∆t ∼ 1/

√
ε.

I For autoresonant trajectory:

|δt| < const⇒
A2

2
≈ Ω(t).

I therefore in autoresonance the soliton
amplitude is determined by the
frequency of perturbation.
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Autoresonance of NLS soliton: numerical simulation
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What we basically need to do to control the soliton:

I Start in (or “close to”) resonance: Ω(0) ≈ A2(0)
2 ;

I Start in phase: ψ(0) ≈ θ(0) − δ∗, where δ∗ – stationary point;
I Change the frequency slowly enough:

∣∣∣dΩ
dt

∣∣∣ < επA.
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Two phase perturbation
I To control both amplitude and velocity of the soliton one

need two phase perturbation:

εf (x, t) = εeiψ(t)
(
1 + g ei k (x−X(t))

)
.

I Functions Ω(t) = ψt and U(t) = Xt are slow:

Ωt = β1ε, Ut = β2ε.

I Lagrange function:

L =2A
(
δt + Ω −

V
k
φt − V U + V2

−
A2

6

)
+

+
εA2

Ω

{
F
(V

A

)
cos δ + G F

(V − k
A

)
cos(δ − φ)

}
,

where new phases δ = θ − ψ, φ = k(ξ − X), G ∝ g.
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I There are four variational equations for A, V, δ and φ.
I The dynamics of phases can be aproximately described by

a two coupled nonlinear pendulums:

δττ = a sin δ + b sin(δ − φ) − β1,

φττ = c sin δ + d sin(δ − φ) − k β2,

where a, b, c, d depend on soliton and perturbation
parameters, τ =

√
ε t – slow time.

I Autoresonance (phase locking) is only possible if
I there are stationary points (δ∗, φ∗) such that δττ = φττ = 0;
I they are stable.

Resonant control of envelope solitons Institute of Metal Physics, RAS, Ekaterinburg



Regions of phase locking
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I Stationary points exist only inside the rhombus on the
(β1, β2) plane.

I They are stable inside of blue areas.
I For some parameters the soliton cannot be phase locked by

the steady drive with β1 = β2 = 0 (right figure).
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To control both amplitude and velocity of soliton one need to
I Start in resonance between soliton and perturbation:

Ω(0) =
A2(0) + V2(0)

2
, U(0) = V(0).

I Start in phase:

ψ(0) = θ(0) + δ∗, X(0) = ξ(0) +
φ∗

k
,

where (δ∗, φ∗) is a stationary point.
I Frequencies should change “slowly enough”.
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Numerical simulation
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What if autoresonance could not be used?

I To be able to use autoresonance we should know
I Amplitude, A
I Velocity, V
I Phase, θ
I Coordinate, ξ

of soliton.
I What if we do not know these parameters?
I Scattering on resonance is an alternative approach.
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Soliton amplification by multiple scattering

I Consider, for simplicity, standing solitons: V = 0.
I If autoresonance conditions are not met, a single pass

through resonance causes a change of soliton amplitude

∆A ∝
√
ε.

This phenomenon is called scattering on resonance
(I.M. Lifshitz, V.I. Arnold, A.I. Neishtadt)

I Multiple passes through resonance should allow us to
increase soliton amplitude significantly if

∆A > 0

independently of its phase.
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Single scattering on resonance

time

Phase plane
t

I Nonlinear pendulum
approximation:

δττ+πA(0) sin δ + α/ε = 0,
Ω = Ω0 + α t.

I Increment of amplitude:

∆A(δ∗, λ) = −π
√
ε

∫
∞

−∞

sin δ(τ)dτ

depends on the resonant
phase δ∗ and parameter

λ =
α

επA(0)
.
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Single scattering on resonance
t

-3 -2

0
theory

NLS

I. For δ∗ > −π2 we use parabolic
approximation:

(∆A)0 = −
√

επ3
signα cos δ∗ + sin δ∗

|πA(0) sin δ∗ − α/ε|

Resonant control of envelope solitons Institute of Metal Physics, RAS, Ekaterinburg



Single scattering on resonance
t

-3 -2

0
theory

NLS

II. Near the left saddle point (for
δ∗ < −π2 ) we use hyperbolic
approximation and obtain:

(∆A)1 =

√
επ2

√
B

[
sin δ̄ ·N0

(
|C|
B

)
−

−signα · cos δ̄ · J0

(
|C|
B

)]
,

δ̄ =δ∗ +
C
B
,

C =πA(0) sin δ∗ −
α
ε
,

B = − πA(0) cos δ∗.
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Single scattering on resonance
t

-3 -2

0
theory

NLS

III. Hyperbolic approximation to
take into account right saddle
point:

(∆A)2 =
√
ε

2πλ
κ

K0

(
ζ
κ

)
where

κ2 = πA(0)
√

1 − λ2
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Fraction of resonantly scattered phase trajectories that
correspond to decrement of soliton amplitude ∆A < 0
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I If |λ| . 0.2, then ∆A > 0 for almost any resonant phase δ∗.

I If |λ| & 1, then ∆A < 0 for nearly half of the resonant
phases δ∗.
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NLS soliton amplification with |λ| = 0.16
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I Amplification process is regular when |λ| . 0.2.
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NLS soliton amplification with |λ| = 0.64
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I Both increasing and decreasing of soliton amplitude is
observed.
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Summary

We considered two ways to control NLS soliton:
I Autoresonance allows to control both amplitude and

velocity of soliton using one- or two-phase perturbation.
I Resonant scattering can also be used for soliton

amplification (and, probably, acceleration).
Both methods complement each other:
I Autoresonance allows for a fine control, but requires much

knowledge of initial state of the soliton.
I Resonant scattering is a bit rough, but does not assumes

exactly known initial state of the soliton.
Both phenomena has a very common nature and may be used
to control other nonlinear waves.
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