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N —
ABSTRACT

In present talk new results obtained recently with my post graduate stu-
dent A.V. Topovsky are reviewed:

e New exact solutions, nonstationary and stationary, of Veselov-Novikov
(VN) equation in the forms of linear superpositions of arbitrary number of
exact special solutions u(™, n = 1,...,N are constructed via §-dressing
method in such a way that the sums u = ut®) 4 ... 4 ulkm) 1 <k <
ko < ... < kn < N of arbitrary subsets of these solutions are also exact
solutions of VN equation.

e The presented linear superpositions include as superpositions of special
line solitons with zero asymptotic values at infinity and also superpositions
of special plane wave type singular periodic solutions.

e By construction these exact solutions represent also new exact trans-
parent potentials of 2D stationary Schrédinger equation and can serve as
model potentials for electrons in planar structures of modern electronics.
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N —
INTRODUCTION |

Among different (2+1)-dimensional integrable nonlinear equations [1, 2, 3,
4,5, 6, 7, 8, 9] prominent place takes the famous Veselov-Novikov (VN)
equation [10, 11]:

Ut + KUzzz + RUzz3 + 3k(U05 1Uz); + 3R(UD; Tuz); =0 (L.1)
where u(z, z,t) is scalar function,  is some complex constant; z = X +1y,
z = x —iy; 9;1 and 9;* are operators inverse to 9, and 9;, 9;10; =
o7, = 1.

VN equation can be represented as compatibility condition in the form of
Manakov's triad [12]:

[L1,Lp] =BLy, B =3(kd; uy + 705 tuzz) (1.2)
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N —
INTRODUCTION |1

of two linear auxiliary problems
L1 = (95; +u)v =0, (1.3)

Lot = (0 + K03 + O3 + 3k(95 MU )0, + 37 (0, uz)05)yY = 0. (L.4)

Several classes of exact solutions of VN equation (1.1) have been con-
structed in last three decades (1980 — 2012) via different methods [10,
11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], see also the books [3, 4].
These solutions include finite-zone type solutions (Veselov, Novikov, 1988) |
rationally localized solutions(Grinevich, Manakov,1986), (Grinevich, Noviko
1988) [13, 14, 15, 17, 18, 20, 21] or lumps.

There have been constructed also examples of solutions with functional
parameters (Matveey, Sal, 1991), (Dubrovsky, Topovsky, Basalaev, 2011)
[10, 16], multiple pole lump solutions(Dubrovsky, Formusatik, 2001,2003) [2
21] and so on.
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N —
INTRODUCTION |11

Underline that the first auxiliary linear problem (1.3) is nothing but the
2D stationary Schrédinger equation so exact solutions of VN equation
constructed via all IST approaches are also transparent potentials of this
Schrédinger equation.

In present paper previously obtained result (Dubrovsky, Topovsky, Basalaev
2011) [24] (see also [22]) about linear superposition u = u® + u@ of two
special solitons with zero asymptotic values —e = 0 at infinity or plane-
wave periodic solutions u(®) and u(® was generalized to the case of lin-
ear superpositions of arbitrary number of special line solitons (or special
plane wave type periodic solutions) u(™, n = 1,...,N in such a way, that
the sums of arbitrary subsets of these solutions

u=u® 4 4ulm) 1<Kk <ky<...<km<N (1.5)

are also exact solutions of VN equation (1.1).
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N —
INTRODUCTION IV

For convenience here some useful formulas of 9-dressing method for VN
equation (1.1) [4, 20, 21, 22, 23, 24] are presented. Central object of this
method is the scalar wave function

_ 3
Y(Niz,Z,t) = e FAZZ0y(z 2 1), F(\z,Z,t) = | [AZ—§Z+(/<;)\3—E€—)t]

x Which satisfies to corresponding 0-problem or equivalently to following
singular integral equation:

dN AdN :
>\)—1+//27rl v // X(u BR (71 N, N)d AT, (1.7)

here canonical normalization y — x» = 1 as A — oo of wave function is
assumed and the kernel R by the formula [4, 22, 23, 24]

—. Y. 5 _ —. WWaF(;2,Z,1)—F(\;z,Z,t
R(1, i A Xi 2, Z,t) = Ro(p, Ti; A, A)eF iz Z0-F (2.2 (1 g)
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INTRODUCTION V

is given.
Solutions u(z,z,t) of VN equation are expressed via reconstruction for-
mulas

U= —€e+iexy; = —€—ix_13 (1.9)
through the coefficients y; and/or y_; of Taylor’s series

Y= X0 H XA RN o X=Xt S A e (L10)

expansions in the neighborhoods of points A = 0 and A = oo of complex
plane C.
In constructing of exact solutions u of VN equation (1.1) two conditions
must be satisfied [4, 20, 21, 22, 23, 24]: the condition of potentiality of
operator L,, or the absence in the first auxiliary linear problem (1.3) of
the terms with first derivatives u; 9, and u,0;, and the condition of reality
U = u of solutions.
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N —
INTRODUCTION VI

The potentiality condition on operator L; in (1.3), or equivalently in terms
of wave function y the condition xo = 1 [4, 20, 21, 22, 23, 24], imposes
severe restrictions on the kernel Ry of 9-problem.

The condition of reality of solutions U = u leads to another following re-
striction on the kernel Rq [20, 21, 23, 24, 22].

- 63 € € € €
RO(/"va)‘v)‘) |,u|2|)\|2ﬁX Ro ( YN T M)v (111)

this restriction was obtained in the limit of "weak" fields.

Both conditions were successfully applied in calculations of broad classes

of exact solutions of VN equation (1.1) by 0-dressing such as lumps [20,

21], solutions with functional parameters, multi-line solitons and plane

wave type singular periodic solutions [22, 23, 24].
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INTRODUCTION VI

In the present note we do not use the limit of weak fields (1.11) and im-
pose the reality condition u = u directly to calculated complex solutions
satisfying only to potentiality condition.

This approach makes it possible to receive besides multi-line soliton solu-
tions also plane wave type singular periodic solutions (this was shown at
first in [22, 24]) and their's superpositions.

The application of 9-dressing in the special limit of zero energy level has
allowed for us to construct new exact solutions, nonstationary and sta-
tionary, of VN equation in the forms of linear superpositions of special line
solitons and also linear superpositions of special plane wave type singular
periodic solutions.

By construction these exact solutions represent also new exact transpar-
ent potentials of 2D Stationary Schrédinger equation and can find an ap-
plications as model potentials for electrons in planar structures of modern
electronics.
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS |

The choice of delta-functional kernel

Ro(u, s A\, A) = ZAné(M = Mn)d(A = An) (2.1)

with complex constant coefficients A, and complex discrete spectral pa-
rameters M,, # A, leads to well known simple determinant formula [22, 24]

9? 2iA
IndetA, Ay =0k + k

u=— =
6+6262 M, — A

eF (M)—F (Ax) (2.2)

for exact multi-line soliton and plane wave type singular periodic solutions
of VN equation. The main problem in using this formula is satisfaction to
reality and potentiality conditions.
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS ||

It was shown in [22, 24] that the choice of kernel Rg (2.1) in the form

N
Ro(1t, /i A 1) =7 3 [amAm(— pim )8\~ Am) + ampim 31+ A )5+ pm)|

m=1

of N paired terms with discrete spectral parameters (um, Am) allows to
satisfy the potentiality condition yg = 1.

In the simplest cases N = 1, 2 one obtains from (2.1) — (2.3) the following
expressions for detA [22, 24]:

2
N =1:detA = (1 n sleAF(MMl)> , (2.3)
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N —
SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS I

N = 2 : detA = (1+SleAF(“1’)‘1) + 5@ 8F (n:An) 1 \ygAF (H1A)+AF (tin,An) 2.
(2.4)
Here, in (2.3) — (2.4) an, in, An (n = 1,...,N) are some complex con-
stants; u, and A, also known as discrete spectral parameters which give
spectral characterization for corresponding exact solutions.

The quantities s,, w and AF (un, \n) are given by the formulas:

fn + An .
Hn — An’
()‘1 B )‘n)()‘n + Ml)(Ml - Mn)()‘l + Mn) (2 6)
(A1 + An)(An = pa) (k1 + pn) (A1 — pin) '

The expression for det A in the case N = 2 (2.4) is generated by two pairs
of terms in (2.3) with discrete spectral variables (p1, A1) and (pn, An)-
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS IV

The formula for generally complex solution corresponding to one arbitrary
pair (um,Am),(m = 1,...,N) of discrete spectral variables due to (2.1) —
(2.3) and (2.5) has the form:

) y _ 2Sm (tm — A )2 e AF (1m;Am)

(m) = _ (m) £) = —_Z3mHm m

um(z,z,t) e+0™(z,Z,t) e—e . (1 + SmelF(imAm) Y
(2.7)

It is remarkable that for w = s;5, in (2.4) for case N = 2 of two pairs of
terms in (2.3) with spectral variables (11, A1) and (un, An), (N =2,...,N), i.
e. for the choice

(A1 = An)(An + pa) (1 — pn) (A1 + pin)
(A1 + An)(An = pa) (k1 + pn) (AL — pin)

-1, (2.8)
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS V

which is equivalent to relation
(A1 — p1)(An — pn)(Arpa + Anpn) =0, n#1, (2.9)
the expression for det A (2.4) greatly simplifies
detA = (1 + sleAF(“l’Al))2 (1 + sneAF(’“"A”)>2 . (2.10)
The solutions puq = A1 and pn = A, of (2.9) correspond to lumps (rationally
decreasing at infinity exact solutions u [20, 21] of VN equation) and in

accordance with M, # Ap in (2.1) will not be considered here, so it is
assumed below that pm # Ay in (2.3) for all terms m = 1,... N with
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS VI

discrete spectral variables um, Am. Under this requirement the relations
(2.8), (2.9) reduce to more simple one:

Anfin + A1 =0, n=2,...,N. (2.11)

An application of general formulas (2.1) — (2.4) in the case N = 2 due to
(2.8) or (2.11) leads to very simple expression for complex solution of VN
equation

7 — Sm(,Uam - )\m)z @AF (um,Am)
u(z.2.)= —e-2c 3 AR ety @12

m=1,n

which is nonlinear superposition u = ¢ + u® 4+ u(™ of two solutions u(®
and u(™ of the type (2.7) with corresponding pairs of spectral variables
(,LL]_, )‘1) and (:um )\n)-
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS VII

Modulo e the solution (2.12) is the sum of complex solutions u(®) and u(™.
We have proved further that nonlinear superposition

N
u(z,z,t) = —e+0M(z,z,t) + Y 1iM(z,2) =
m=2
Sl(ﬂl — )\1)2 eAF(HlJ\i)
a1 (1+ SleAF(HlJ\i))Z
@AF (um,Am)

= —€— 2¢

N

—2¢ Z Sm(im — )\m)z

(2.13)

m=2

)

of arbitrary number N > 2 of complex solutions, solution u(l (z,
z

z,t) =
—e+0(M(z,z,t)and N—1 > 1 solutions u(M(z,Z,t) = —e+G(M(z, Z t),m =
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS VIII

2,...N of the type (2.7) is also exact solution of VN equation, when con-
ditions (2.11) are fulfilled and parameters p; and A, are satisfied to addi-

tional restriction

€3

k1A — kp— =0. (2.14)
H1

Due to conditions (2.11), (2.14) the phases AF (un, An) (2.5) in (2.13) take
the forms:

€ €

“Pl(zvzvt) = AF(,U'L)‘l) =i [(Ml - )\1)2 - <Z — )\—1> Z

3
) <R1A§ - m2%> t], (2.15)
1
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS [IX

¢m(Z,Z) := AF (um, Am) =1 [(,Um —Am)Z — (i - i) 2} . (2.16)

Hm Am
where m = 2,...,N. These last expressions (2.15) and (2.16) mean that
the first complex solution u(z,z,t) = —e + G(Y(z, Z, t) of superposition

(2.13) propagates with nonzero velocity on the plane (x,y) but all other
complex solutions u(M(z,Z) = —e + 0(M(z,2), (m = 2,...,N) of superpo-
sition (2.13) with N > 2 are fixed on the plane (x,y) stationary solutions
of VN equation (1.1).

We have proved also that restrictions of the sum in (2.13) to every subsum
of arbitrary terms 1 <i <i+1 < .. <j—1 < j < N due to conditions
(2.11), (2.14) also lead to exact complex solutions

u(z,z,t)=—e+>» a" (2.17)
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SIMPLE NONLINEAR SUPERPOSITIONS OF COMPLEX
SOLUTIONS X

of VN equation. Complex solutions of VN equation given by (2.17) due to
(2.15), (2.16) can be divided on two classes: the class of nonstationary
solutions with i > 1 and class of stationary solutions with i > 2.
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LINEAR SUPERPOSITIONS OF LINE SOLITON SOLUTIONS
I

For construction of real multi-line solitons via (2.2) besides potentiality
condition satisfied by the kernel Rq of the type (2.3) the reality condition
u = u for solutions u must be fulfilled. This can be done choosing appro-
priately complex constants a, and complex discrete spectral parameters
(1n, An) in (2.3) — (2.16) by several ways [24, 22].
For example, by imposing reality condition u = U on complex solutions
(2.7),(2.12),(2.13) and (2.17) with additional assumption of real phases
AF (pin, An) = AF (un, An) (2.5) we have calculated real multi-line soliton
solutions.
It was shown in the papers [22, 24] that to such real solutions u leads the
following choice of parameters

€

an:—an = ia.no7 MHn = —=, n:l,...,N (31)
An
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——
LINEAR SUPERPOSITIONS OF LINE SOLITON SOLUTIONS
|

with real constants a,g. Due to (3.1) and under additional assumption of
positive values of real constants s, given by (2.5)

A
sn:anomd:efe¢°">0, n=1,...,N (3.2)

An — Un

the solution (2.7) takes the form of real nonsingular one-line soliton solu-
tion

L 1) A — pinl? (3.3)
2 cosh? @n(xvyvzt)+¢0n )

with real phases ¢n(X,y,t) given by (2.5)

on(X.Y.1) = AF (ttn An) = 2JAn] (1+ ) (Raf —Vat),  (3.4)

€
[Anl?
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LINEAR SUPERPOSITIONS OF LINE SOLITON SOLUTIONS
I11

here I = (x,y), N, are unit vectors of normals to lines of constant val-
ues of phases ¢n(X,Yy,t) and V, are corresponding velocities of one-line
solitons

N Anl )\nR> 1 € (€ —An]?) 3
Np= (22 AR oy = = = (14 28700 ) i), (3.5
o= () v wr( ) M) B9

wheren=1,... N.

The conditions (2.11) for discrete spectral parameters (un, An), (n > 1),
in nonlinear superpositions (2.12) and (2.13) due to (3.1) lead to following
parametrization of (un, An)

fn =17y g1, An=imA, (N=2,...,N) (3.6)

with arbitrary real constants 7.
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LINEAR SUPERPOSITIONS OF LINE SOLITON SOLUTIONS
AY

Nonsingular two-line soliton solution characterized by two pairs of discrete
spectral variables (11, A1) and (u2, A\2) due to (2.12), (3.1), (3.2) and (3.6)
takes the form

u(x,y,t) = —e—i—Zu(”) = e—i—z Ao — in? (3.7)

2 Coshz QOn(X,y t)+¢0n

where u(M(x,y,t) = —e+ M, (n = 1,2) — one-line soliton solutions (3.3)
and phases pn(X,Y,t), (n = 1,2) are given by (3.4).

It is evident due to expressions for vectors of normals (3.5) and parametriza
tion (3.6) that solitons u® and u(® in (3.7) move in the plane (x,y) per-
pendicularly to each other.
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FIGURE 1: Potential Vscnr = —2(u +€), corresponding of two-line solution
(3.7) (blue), with energy level E < 0 (yellow plate) and squared absolute
value of corresponding wave functions |1(u1)|? = [1»(—A1)|? (green).
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N
TWO SOLITON SOLUTION.

TwoSolitonSolution
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It was shown in the paper [22, 24] that the limiting procedure for calcu-
lation of exact solutions u of VN equation with zero asymptotic values at
infinity u||Z|z_,C>O = —e — 0 can be defined by the following way

e—=0, pun—0, Mi—>—Xn7£0, n=1,...,N. (3.8)
n

It is assumed that under procedure (3.8) the relations \p = iThA; from
(3.6) remain to be valid.

In the limit (3.8) two-line soliton solution (3.7) converts to linear superpo-
sition

2 2
_ (D (2) [An|
u(x t U._p+u, > 3.9
( Y ) =0 Z]_ 2C0$h2 <Pn(X,yét)+¢0n ( )

of two one-line solitons ui)o and u£2:)0

(n) |)\n|2

1m0 = 5 cosh? By Ty n=12 (3.10)
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|
with phases ¢n(X,y,t) given due to (3.4) and (3.8) by formulas

(.Y, 1) = 2/An|(Naf — Vat), N:(LA—R) h—1.2. (3.11)
Pl Thal

Here r' = (x,y), N, are unit vectors of normals to lines of constant values
of phases ¢n(X,y,t); Vy are corresponding velocities of one-line solitons

Im(kA3) Im(kA3)  TIRe(kA})

Vi =— oV, = =
! M| ? Aol [72[[ A

(3.12)

derived by the use of (3.4), (3.6) and (3.8).

By special choice of spectral parameter \; one of two one-line solitons
ug )0 or u o (not both) in linear superposition (3.9) can be "stopped".
For example one can choose V, = 0, this achieves due to (3.12) for )\,
satisfying to condition

kA3 +FAL = 0. (3.13)
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The nonlinear superposition of the type (2.13) with N > 3 terms and pa-
rameters an, (un, An) and s, satisfying to (2.14), (3.1), (3.2) and (3.6) takes
the form

N

_ |)‘1 *Hl|2 |)\n *Hn|2
U= e+ 2 cosh? <P1(X7Yét)+¢01 T Z:; 2 cosh? sOn(nyz)-f'%n (3.14)

with phases ¢n (3.4) given due to (2.14) — (2.16) and (3.1), (3.2), (3.6) by
expressions

€ -
p1(X,y,t) = 2|\ <1 + W) (N1r — V1t),
(3.15)

enl(x,y) = 2] ( Pt \2> (No).
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Heren =2,...,N, r = (x,y); vectors of normals N, and V; are given by
following formulas

= - ikA3 — |A\1]?
N1:<)\lI A1R>7N2:<)\1R )\1|>7V1_ il 1(1—1-76(6 ’l’)>

[Aa]” [Aa] Aal” A Al [Agl?
(3.16)
Due to (3.15) and (3.16) it follows that soliton u®) = —¢ + G(M(x,y,1)
moves on the plane (x,y) perpendicularly to others stationary solitons
uM = —e+0M(x,y), (n = 2,...,N) with parallel lines of constant phases
(pn(X,y).
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FIGURE 2: Potential Vssr = —2(u + €) corresponding to five-line soliton
solution (N = 5) (3.14).
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N
FIVE-LINE SOLITON SOLUTION

FiveSolitonSolution
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In the limit ¢ — O following to the rules (3.8) one obtains from (3.14) linear
superposition of N one-line solitons

N
u= ugi)o(xvyvt) + Zugi)o(XaY) =

n=2
. (3.17)

_ Aaf? 3 Anl?
2 gi(xy )+ 2 @n(X.Y)+don
2 cosh? #1x y2) do1 “= 2 cosh Bn(X )/2) $o
with phases @p (3.15) which in limit e — 0 (3.8) are convert to the expres-
sions

Sbl(xayat):2|)‘1|(N‘1F*Vlt)a @n(X,Y):27n|Al|(N2F)a n:25"')N'
~ (3.18)
Here due to (3.6) and (3.11) vectors of normals N, , are given by (3.16),
H 3
the value of velocity of nonstationary soliton due to (3.16) is V; = %
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|
The first one-line soliton u(l)o(x, y,t) from linear superposition (3.17) moves

€=

with velocity V; on the plane (x,y) perpendicularly to other (N — 1) sta-
tionary one-line solitons u{™, (x,y).

Remind that linear superposition (3.17) is obtained for ¢ — 0 by the use
of limiting procedure (3.8), due to (2.14) and (3.6) it takes place under
conditions

A =i, KAS+EA3=0, n=2,... N. (3.19)

Evidently particular case of (3.9) with Vo, = 0 coincides due to (3.11) —
(3.13) and (3.19) with the case N = 2 of linear superposition (3.17).

We have proved also that the subsums of arbitrary numbers of solitons
ugi)o, (n =1,...,N) from (3.17) are also solutions of VN equation. The
set of such solutions can be divided in two subsets: subset of nonsta-
tionary linear superpositions (with the first moving line soliton uéi)o(x, y,t)
in the sum) of line solitons and subset of stationary linear superpositions

(without moving line soliton ui)o(x,y, t) in the sum) of stationary line soli-
tons.
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]
LINEAR SUPERPOSITIONS OF PLANE WAVE TYPE
PERIODIC SOLUTIONS |

By imposing reality condition u = U on complex solutions (2.7),(2.12),(2.13)
and (2.17) with additional assumption of real phases AF (un, An) = AF (un, .
(2.5) multi-line soliton solutions are calculated in preceding section.

In contrast the reality condition u = u with assumption of pure imaginary
phases AF (un, A\n) = —AF (un, An) (2.5) lead to plane wave type periodic
solutions and their’s superpositions.

Plane wave type solutions can be obtained by this way for example by the
following choice of parameters an, (1, An) and sy in (2.3)-(2.6) [24, 22]:

An — An — Hn
An + pin

€
,Un:—_aan

An

|argan’ Sy = _ieiargansign (;n +Mn> ,h=1 ...
n T Mn
(4.2)
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N —
LINEAR SUPERPOSITIONS OF PLANE WAVE TY PE
PERIODIC SOLUTIONS ||

Simple plane wave type periodic solution corresponding to one pair of
spectral variables (un, An) due to (2.7) and (4.1) takes the form

2
[An = pon| (4.2)

UM = G
20032 (@n(xayatz)"’_arg an :F >

NN

with real phases ¢n(X,y,t) := =i AF (un, An)

on(X.Y1) = —IAF (tns An) = 21 <W - 1) (Naf —Vat).  (43)
n
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LINEAR SUPERPOSITIONS OF PLANE WAVE TY PE
PERIODIC SOLUTIONS ||

here ' = (x,y); Ny as unit vectors of normals to lines of constant values
of phases ¢n(x,y,t) and velocities V,, of periodic solutions are given by
expressions:

- AnR m) 1 e (e + |Anl?) 3
Np= (20R A0 )y — = = (14 S8 ) Rekad), (4.4
" <\Anr PP ARG o) Relsdn). - (4.4)

wheren = 1,...,N. Using (2.12) and (2.13) one can construct also non-
linear superpositions of simple wave type periodic solutions of the type
4.2).

The conditions (2.11) for discrete spectral parameters (i, An), (n > 1) in
nonlinear superpositions (2.12) and (2.13) due to (4.1) in considered case
lead to following parametrization of (un, An)

o R | o
)\n —ITH)\la Bn = 17Ty "1, (n _25)N) (45)
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LINEAR SUPERPOSITIONS OF PLANE WAVE TY PE
PERIODIC SOLUTIONS IV

with arbitrary real constants ,. Nonlinear superposition (2.12) of two
simple plane wave type periodic solutions of the type (4.2) due to (4.1)
and (4.5) takes the form

u(x,y,t) = —e+2u

2
’)\n - Mnfz

X,y t)+arga !

(4.6)

where phases pn(X,Y,t) are given by (4.3). Due to expressions for vec-
tors of normals (4.4) and parameterizations (4.5) it is evident that lines of
constant values of phases ¢n(x,y,t),(n = 1,2) for u® = —¢ + ™ and
u@ = —¢ + i@ in (4.6) are moving perpendicularly to each other.
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FIGURE 3: a) Potential (i(x,y,t = 0) = u(x,y,t = 0) + € corresponding to simple
plane wave type periodic solutions (4.2). b) Potential G(x,y,t = 0) = u(x,y,t =
0) + ¢, corresponding to nonlinear superposition of two simple plane wave type
periodic solutions (4.6).
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SIMPLE PLANE WAVE TYPE PERIODIC SOLUTIONS

PeriodicSolution
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It was shown in the paper [22, 24] that the limiting procedure of calculation
of exact solutions u of VN equation with zero values of parameter ¢ = 0
defined by the following way

€0, un—0, Miﬁxﬁéo, n=1,...,N (4.7)
n

is applicable also in considered case of plane wave type solutions and
their's superpositions. It is assumed that under procedure (4.7) the rela-
tions A, = imA; from (4.5) remain to be valid.

In the limit (4.7) nonlinear superposition (4.6) of two plane wave type pe-
riodic solutions converts to linear superposition

2
Anl?
ueey, ) =uly +uo = =3 ~ (4.8)
B 5 2.co5? ((EbYrasm | )
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of two periodic solitons Ui)o and u'®)

e=0
A 2
Ugi)o T 7 (l nt’)+al' a , =12 (4.9)
2cosz (90" 7y72 g n_i_%)

with phases @n(X,y,t) and unit vectors Nn given due to (4.3) and (4.7) by
formulas

. N - A A
Bn(%.Y,1) = —2DAn(FaF — Vit), Nn:(i‘ ——”'>, n—12.

[Anl” [An]

(4.10)
here r = (x,y); N, are unit vectors of normals to lines of constant values
of phases @n(X,y,t). The corresponding velocities V, of simple plane
wave type periodic solutions (4.9)

B Re(kA3)
A1l

B Re(kA3) _ 3Im(kA3)
|Az] |72][A1]

V= V, = (4.11)
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are derived by the use of (4.3), (4.5) and (4.7). By special choice of spec-
tral parameter \; one of two of these periodic solutions u£1)0 or u£2:)0 (not
both) in linear superposition (4.8) can be "stopped". For example one can

choose V, = 0, this achieves due to (4.11) for \; satisfying to condition

kA3 —FA = 0. (4.12)

The nonlinear superposition of the type (2.13) with N > 3 terms and pa-
rameters apn, (4, An), Sn Satisfying to (2.14), (4.1) and (4.5) takes the form

2 N 2
U= —e— A1 — g 72 |An — pin|
x,y,t)+arga x.,y)+arga
2 cos? (901( 2) 1 %) ‘= 2cos? <90n( )2 0 %

(413)
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-
Here phases ¢, (4.3) due to (2.14) — (2.16) and (4.1),(4.5), (4.7) are given
by expressions

—

p1(X,y, 1) = 2|\ (\/\ 2 1) (N1 — Vat),
SDn(Xay) = 2|)‘l| (W - Tn> (Nzr),

wheren =2,... N, r = (x,y); unit vectors Np and velocity V, are given
by following formulas

= () Ry = () vy = <1+w>

(4.14)

RYTRNPYY el Al | Aa |A1]*
(4.15)
Due to (4.14) and (4.15) it follows that lines of constant values of phase
©1(X,y,t) of periodic solution u®) move on plane (x,y) perpendicularly
to parallel lines of constant phases ¢n(x,y) of others stationary periodic
solutions u™, (n=2,...,N).
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In the limit ¢ — O following to the rules (4.7) one obtains from (4.13) linear
superposition of N simple plane wave type periodic solutions

A 2
u=u® oo™ ~(X‘ lj)w R
2 cos? (W e %) ( )
4.16
N
An?

_l’_

)

pn(X,y)+arga
n—2 2 C0S? <7“"”( Jrargan %)

here phases ¢, are obtained from phases ¢, (4.14) by limiting procedure
e — 0 (4.7) and are given by expressions:

3

) , Bn(X.y) = —2m| M| <ﬁ2F> . (4.17)
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.
Remind that linear superposition (4.16) is obtained for ¢ — 0 by the use

of limiting procedure (4.7) due to (2.14) and (4.5), it takes place under
conditions

A=A, A —FA3=0, n=2_... N. (4.18)

The lines of constant values of phase ¢;(X,Yy,t) of the first periodic solu-
tion ugi)o from linear superposition (4.16) move with velocity V, = Ii)\?/|)\1|
perpendicularly to lines of constant phases ¢n(x,y) of (N — 1) other sta-

tionary periodic solutions ugi)o, (n=2,...,N).
We have proved also that the subsums of arbitrary numbers of solutions
ugi)o, (n =1,...,N) from (4.16) are also solutions of VN equation. Evi-

dently particular case of (4.8) with V, = 0 coincides due to (3.19) with the

case N = 2 of linear superposition (4.16).

The set of constructed in present section solutions can be divided in two

subsets: subset of nonstationary linear superpositions (with the first mov-

ing line soliton ui)o(x,y,t) in the sum) and subset of stationary linear

superpositions (without moving line soliton ui)o(x,y,t) in the sum).
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