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Classification of integrable equations - classification
of Lax representations.

Kac-Moody algebras: graded Lie algebras

Automorphic Lie algebras: quasi—graded Lie alge-
bras

Finite reduction groups, automorphic Lie algebras
and corresponding integrable systems

soliton solutions for two-dimensional VVolterra chain.



Lax pair:

d d
L=——-U(x,t N\, A= —— , T,
o (z ) pn Vz,t; \)

LW =0, AW =0

[L,Al=U— Ve +[U,V]=0



Example (2-dimensional Volterra chain):

L=208;,+ )\ 1ua —xa~1lu

M=208+21aa -~ A la+ 1x2bAZ - \2A"2p

where u,a,b are diagonal matrices and

010 0
|10 0 1 0
A_ooo...1

1 00 ... 0

In variables u = diag (exp(¢;)),a = diag (0; exp(e;))

it = 0; o+ di o0+ Pitl—ePi-1, Oit1—0itPit1,0F¢i = 0.



The field of rational functions C(\) of A

The ring of polynomials C[A] in A

The ring of Laurent polynomials C[\, >\_1].

Ry (IM) a ring of rational functions of A with poles at
A= €T ={ur € C} and with no other singularities.

C[A] = Ry(o0) and C[X\, A71] = Ry (00, 0)

Let A be a simple Lie algebra over C ( A = si(N,C)):
(M) = Rx(IM) Q¢ X,

a(\) = Z¢n(>\)an c Ql/\(l'), an €A, dn(N) € R)\(r).

[Z ¢n(A)anaz Ym(N)am] = Z En(N)Ym(X)[an, am] -



Kac-Moody algebras (V.Kac, 1968)

Let ¢1 : /A — 2 be an automorphism of a finite order n
dq:2A,(0,00) — A\ (0,00), is defined as

271

®1(a(N) = g1(a(w™ ), w = exp(—)

n
CD1€AUtQ[)\(O,OO), g=<¢1; 7{“2 id>2Z/nZ.

A Kac-Moody algebra L(2, ¢1) can be defined as
L(A, ¢1) = {a(N) € Ax(0,00) [a(X) = ¢1(a(w A} .

L, 1) = @ L, 61), [LF(A, p1), L™(A, $1)] C LET™(A, ¢1),
keZ,

where LE(A, ¢1) = N9, and A = {a € A| ¢1(a) = wFal.
Al ... G, A2 D2 EZ2 D3



Automorphic Lie algebras.
Example: The map g1 : R(0,00) — R (0, 00)

g1(a(N) = a(w™ X)),  a()) € Ry(0,00)

is an automorphism of R, (0,occ) of order n.
The ring R,(0,00) = C[X\, A\~1] has automorphism g of
order 2

g2(a(N) = a(A™h),  a()) € R5(0,00).
Automorphisms g1, g» generate a subgroup G C Aut R, (0, o)

] 2 .
G =(91,92; 91 = 95 = 91929192 = id) >~ Dy, .



Let ¢1,¢2 € Aut2 and ¢f = ¢3 = p1¢a¢1¢2 = id.

271

®1(a(N) = ¢1(a(wtN), w = exp(—)

n

Pa(a(N) = pa(a(A"1)), @1, Ps € AutA,(0,00).

G = (Pq,Py; P = (D% = P1DPrP 1Py, = id) C Aut 2, (0, 00).
A subalgebra of 2, (0, co)

A7 (0, 00) = {a(\) € A\(0,00) |a = ®1(a) = Pa(a)} .

iIs an example of automorphic Lie algebra.



Finite reduction groups.

We will consider finite groups G whose elements are
Mobius (fractional-linear) transformations. Every ele-
ment g € G is represented by a transformation

og(A) = ag0g—PBgvg 7= 0, g, Bg,vg,0g9 € C.
(1)

Action of Mobius transformation on a rational function
f(X) € C(N) is defined as oy 1 f(A) — f(o,t(N)).

If the group average

(FO))a N flogtOD)

9geG

is not a constant, then (f(\))q is a rational automorphic
function.

IGI



According to F.Klein (1875), all finite subgroups of
PSL(2,C) are in the following list:

1. the additive group of integers modulo N, Z/NZ

2. the symmetry group of the dihedron with N ver-
tices, Dy

3. the symmetry group of the tetrahedron, T

4. the symmetry group of the octahedron, O

5. the symmetry group of the icosahedron, I



Inner reduction group. (A =sl(N)). Aut(si(N)):
¢ € Autsl(N) = ¢(a) = QaQ ™! or ¢(a) = —Qa'"Q 1.
Let p: G — PSL(N,C) be a projective representation.

We shall denote p(g) = Qg, where Q4 € PSL(NV,C) is
the corresponding N x N matrix.

With every element g € G we associate a pair

clDg — (Uga Qg)~

Obviously G = {Py|g € G} is a group with multiplica-
tion (Dgcbh = (Dgh'

The group G is called the (inner) reduction group,
corresponding to a finite MoObius group G and represen-
tation p.



Automorphic Lie algebra ng(l‘) is defined as a G-
invariant subalgebra of 2, (IN)

AT (M) = {a(N) € A\(M) | Pg(a(N) = a(N), Vdg € G}

There |s a natural projection Pg of the linear space I,
onto Ql given by the group average.

For a(\) € 2, we define Pg(a(k)) C 2[9 as

Pga(N)) = (a(N))g > ®aN) = = > Qgalo, (A)N)Q,t

|g| dbecg |G| geG
Obviously Pz = Pg.

‘The projection Pg : Ay — 2[% IS a surjective linear map,
but it is not a Lie algebra homomorphism.



Orbits of G. For any vy € C we denote

e the orbit G(vg) = {9(10) |9 € G}.

e the isotropy subgroup G-, = {g € G| g(y0) = Y0}

e If the group G,, is nontrivial, i.e. |G| = n > 1,
then ~g is a fixed point of order n.

e If 7o is a fixed point of order n > 1, than the orbit
G(vp) is a degenerated orbit of degree n.
|G(v0)| = |G|/|G~y|- Orbits corresponding to generic
points we call generic.



Let A = slI(IN). To construct Qlf(I‘) we choose:

e A finite MObius group G, represented by Mobius
transformations oy

o A finite set of points 4 = {v, € C} and define its
orbit T' = UG ()

e A projective representation p : G — PSL(N,C), so
that p(g) = Qg

Then G = {(04,Qg)|g € G} and

—1
A (T) = {|é| Y e

(o T =)

la €A, v €7, nENO}



Example: In 2 = si1(2,C),G = D>. We represent the
group G by the Mobius transformations

gi(N) ==X, o) =171
There are orbits
Mo ={0,00}, Ty={%1}, ;={+i}, = {tp +u 1}
The reduction group G ~ D> is generated by

P1(a(N)) = sza(—A)s3, ®o(a(N)) = s1a(A" sy

(10 (01 (0 -1 (1 o0
0=lo1 )=\ 10/°%27\1 0 )3T \0 -1



In si(2,C) we take standard basis e,f,h

(0 1 (0 o0 (1 o0
e=(00) r=(28)=(s &)
Lie algebras A{ (o) is generated by

el =2()e)g, f1 =2(\f)g, h? = 2(\%h)g
Evaluating the group average we get:

1 0 A 1 0 ! 2 _ (12 (-2 1 0
e—(/\l o)’ f_<>\ 0 ) h™ = (A"-A )<o —1)'

Their commutators are (J = A2 + A 72):

[e!. f1] = h2, [h2,el] = 2Je! — 4f!, [h2 £l = —2Jf! + 4el.

A (o) has basis: A= | | A, A, = {J"tel, Jrifl grin?y
neN

A (M) = P AF, (AP, A7) c AP AT A" = SpancA,.
k=1



Proposition 1. Let A = sl(2,C) and G ~ D». Automor-
phic Lie algebras QLHA)Q(I_O), QlHQQ(I’l) and QLHA)Q(I‘Z'), corre-
sponding to degenerated orbits, are graiding—isomorphic.

Proposition 2. Let A = sl(2,C) and G ~ D>. Automor-
phic Lie algebras corresponding to generic and degen-
erated orbits are not isomorphic.

Theorem 1. Let A = s1(2,C), G be any finite non-cyclic
reduction group and I’ be any degenerated orbit of the
corresponding Mobius group. Then the automorphic
Lie algebra ng(l‘) is grading isomorphic to QLIE)Q(I‘O).

The Theorem has been proven by: R.Bury, A.Mikhailov
and independently by: S.Lombardo, J.Sanders



sl(2) Automorphic Lie algebras with a finite reduction group

A° the polynomial part of the Loop algebra
A\(c0) = C[A]®csl(2,C) , when the reduction group is trivial;

Al the subalgebra Ly (2, ¢), ¢?> = id of the Kac-Moody algebra,
this case corresponds to ng(l‘) with G ~ Z/27 and I = {cc};

algebra 2{(I",) with G ~ Z/27 and a generic orbit I, = {£u};
A2 algebra Q(f(l‘) with G ~ D, and a degenerated orbit ' = {0, co};

A2 algebra A () with G ~ D> and a generic orbit M, = {pu, +p71}.



Integrable equations corresponding to ng(l_), A =s1(2).

oo
ng(l') = @ .Ak, A" = J”_lspanc{al,ag,ag,}.
k=1
J = J(\) - automorphic function, and a;, = a;()\).

We take the Lax pair (L, M) of the form

3
L =0z + Z ui(x,t)a;
1=1

3 3
M =20+ > vi(z,t)a, + Y wi(x,t)Jay

The compatibility condition of the Lax pair defines a
nonlinear integrable system for the entries of X and T



AO the polynomial part of the Loop algebra
Ay (oc0) = C[A] ®¢ sl(2,C), trivial reduction group:

The NLS:

Ut = Ugr + 2vu2,

—Vt = Vgx + Duv?

or (gauge equivalent) the Heisenberg model

Qu%
Ut — Ugx — ,
u — v
21}%
—Vt =— VUggx —

V—U



Al the L4 (2, ¢) subalgebra of the Kac-Moody algebra:
2(/\(I’) with G ~ Z /27 and I = {oco};

The derivative NLS

1

U = —E(u%uz)x — SUlez
1 1

Ut — _§(u1u%)$ + 2u2x:13

A2 algebra Ql(;\;(l‘) with G ~ D> and a degenerated orbit
= {0, 00}:

1 1
Uit — _E(U%UQ)QI — Eulazaz + 2uoy,
1 > 1

Ut — _§(u1u2)$ + 5“2:10:6 + 2uq,



For the generic orbits and all groups we obtain sys-
tems of the form:

2u2 2
Ut = Ugpy —  — 5 [P(u,v)uy — R(u)vy]
u—v (u—v)
202 2

—V¢ = Vgx T+ < +

v—u (u—1v)2

[P(u,v)vy — R(v)ug]
where

P(u,v) = Dauv? + b(uv2 -+ ’Uu2> + 2cuv + d(u 4+ v) + 2e
R(u) = au® + bu3 -+ cu? + du + e.



(Trivial reduction group): P(u,v) = R(u) = 0.

algebra 2A{(I,) with G ~ Z/2Z and a generic orbit
My ={%p}:

P(u,v) = 2uuw, R(u) = pu?.

algebra Ql(j{(l‘u) with G ~ DD, and a generic orbit
M= {Ep, 201}

2
P(u,0) = o (w?0? = (6 4 = Duv + 1),

0

R ="

(u* — (2 + p ?)u® 4+ 1)




Only the groups T, O and I have irreducible faithful
projective representations of dimension 3 or higher.

1. T has one 2-d and one 3-d representations

2. O has one 2-d, one 3-d and one 4-d representations

3. I has two 2-d, two 3-d, two 4-d, one 5-d and one
6-d representations.



A = si(3,C). Tetrahedral group (the same equation for
Octahedral and Icosahedral groups!):

A2 o
os(A) = wA,  or(A) = %», w = exp (%)

The group T has a 3-dimensional irreducible faithful

projective representation p : T — PSL(3,C) with ele-
ments s and r represented by:

w 0 0 (-1 2 2
Qrs= |0 w? 0| Qpr==|2 -1 2
0 0 1 3lo 2 _1

The reduction group G ~ T generated by two elements
U (087 QTS)a P, = (UTa QTT)-



A= s1(3,C), G=T:

3
a1 = (Ae1s)p,az = (Aea1)7,a3 = (Aesa)y, J = (%),

L =0y + Z ui(z,t)a;

1€7.3
— 2 0
Ut = Ugx + (% + Ouvy

2
—Vt = Vgx + Uy — Ovuy

where

0 — ae—(u-l—v) 4 ale—wu—w*v + aze—w*u—wv’ w=e3



A = sl(4,C), G = O (the same equation for the icosa-
hedral group!):

1 =i(5 . — 3 ,)
+ (2,0 + P3,2)eV1 T2V 4 (4o + 13 p)e V2T
+ (o0 + 3 2)e” PIEWRTVI 4 (yo a3 p)eT VLTIV

¢2,t — i¢2,xx — iwl,a:w&a:

+ (wl,a: + ¢3,x)6w1+¢2+¢3 + (wl,a: - ¢3,x)6¢1_¢2_¢3
4 iy pe P1TIW2TWS _ jyn e TVITIW2 I3

¢3,t — _i¢3,azx + iwl,aﬂvbQ,x

+ (Y10 + P2,0) eV 1TV 4 (91 — 1o p)e1 V2T
_ i¢27x6—¢1—1¢2+2¢3 + i¢2,xe—¢1+w2—w3



Two-dimensional Volterra system.
Soliton solutions
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1 4+ 1-dimensional Volterra system (AVM 1979):

bit = 0; 0 + b; 10; + 201 — 201 it N = O
N

Oit1 —0i+ dit1,2+ @i =0, Y ¢i=const=0.
i=1

Continuous limit — KP equation (N — oo, Nh = 1):
L
bi(w,t) = h?u(§n,7), h=——0,
T=h3, €=ih+4ht, n=h’z

2 _
Ur = gu&& + Buug — 2D£ 1“?777 + O(h2).



By a linear transformation (Fourier transform):

bn = Z wknxk, w = exp(2nwi/N)

k=1
we can diagonalise the linear part of the system
1 —I—w
th_ﬁkax_l_(wk_(wk) )Xk_l_ k=1,...N-1
or
27k
Xkt = zcot(—)ka+2z Slﬂ(—)Xk-l- k=1...N-1

If ¢pn are real, then xp = x* ..

For N =3, w=exp(2n7i/3):

*k X ok k *k
iut — uxx+(u;)2_|_e—2u—2u _I_w*e—Qwu—Qw U _I_we—Qw Uu—2wWu



Dy invariant Lax pair:
L)) =SLw s Loy =-A0™ Y
L=0;+ X tlua - a1y

M =08;+2"taA - xala+ 2 2uaua — 2atua1a

with
(w O ... ... ... O\
0O w2 0 ... ... ... 0
S —
0O ... ... ... 0 WwN-1 0
\0 ... ... ... ... 0 1

and u = diag (exp(¢;)),a = diag (0; exp(¢;)).



[L, M] = 0 <= there exist a fundamental solution ¢ (\, x, t)
Ly =0, Myp=D0.

The Lax pair, (Lg, Mg), corresponding to the trivial so-
lution ¢; = 0 is given by

Lo=080:4+2"1Aa - a1
Mo = 0 + AT2AZ — \°AT?
and the solution, g to
Loyg =0, Mopypg=20

IS given by
b = 6(—>\_1A—I—AA_l)x—I—(—)\_QAQ—l—AQA_Q)t



Morover, it follows from the reduction group that ¢ and
1o satisfies the conditions

1. Sy(w= NS~ =), S1o(w NS = YN,
2. [ IO DT =), [ LTI = (V).

If ¢;(x,t) are real, then we also have

3. (X)) =9 (N), Po(A") = Yo (N).



Rational dressing.
We represent v in the form ¥ (x,t, \) = x(x, t, N (x, t, \)
and Ly = 0 then

L = x(z,t, \)Lox~ *(z,t,\)

Let us assume that y and xy—1 are rational functions in
A with simple zeros (poles)

_—C+Z

where ¢, Ay, Ak are matrix functions = and ¢t and sets
{u, € C},{v, € C} are constants and

{up € CH v €C =10,

A — g A — Vg



e How to parametrise matrix valued rational func-
tions?

e What is the dependence of c, Ay, Ak on x and t7

For a scalar function f(\) with simple zeros and poles
we need to know: (i) positions of zeros {u; € C}, (ii)
positions of poles {v, € C} and (iii) a value f()\g) at
one regular point Ag:

N (O = ) (Mo — )

FO =100 15— S0 =)




A matrix—valued (N x N) rational function x(\) (with
simple poles and zeros) can be uniquely characterised
by:

1. a set of zeros {u;. € C} and the corresponding kernel
spaces V,,, = Kerx(ur). The kernel space V,, can
be seen as a point on the Grassmanian G,, N, ng =
dimV,,.

2. The set of zeros of the inverse matrix {v, € C} and
corresponding co-kernal spaces V;, = Ker (x 1 (u))?

3. A value x(A\g) at one regular point Ag.



Reduction conditions:

1. Sxy(w™ NS =y
2. [xTOHIT =xO)
3. X"(\) =x(\)

Thus v, = ugl and set {ug} = {u;} = {wug}. Therefore
the set {u:} is a union of orbits of the form:

(@) {Fu}_{, peR, “Kink”, or
(b) {wk,u,wk,u*}]kvzl, peC, why £ wsu*  “breather”.
Moreover

— Qk — O —



Simplest case, y € R, “kink”.

We assume u #= 0,x1, u € R:

— —ks kASK
_]_ _
(A) =c+ E “ b

Here c, A are real (follovvs from the reduction condi-
tions).

Rank of the Kink solution is defined as dimV,, = rank A.
dmV,=1 = A =nm!, neV,

dimV, =k = A =nm’!, rankn =k, Spann =1V,



Rank 1 “kink™:

1
¢; = s log

o(i—1)o(i+ 1)
2

o (i)?

N
o (i) = Z n}%MQ{(z'—k) mod N}
k=1

n(z,t) = Po(p, z, t)ng, ng € RY

o\, x,t) = 6(—>\_1A—|—>\A_1)a:—l—(—A_QAQ—I—AQA_Q)t



ng = (1,0,0) contour, t = —5:

e




5(i) = cos?(n)y2{(—1) mod 3}—|—c052(n—4§)u2{(i_2) mod 3}

i C052(77 . 2?77)“2{7; mod 3}

1 o(i—1)a(i+ 1)
Pi = 5109 ( o(i)> )



p=101; 2; 5, 1000, 2 =143+ /3+2V3




-




We can decompose RN as a direct sum of invariant
subspaces of g

N=2m-1, RN =FE} P E?

m—1
_ N _ 1 1 2
N=2m, RY=EjEPE, P E;
p=1
Where

Ecl) = span(ey), E%l = span(em), Eg = span(Re(ep),Im (ep)),



Rank 2 kink: ng = ((1,0,0,1,1),(0,1,1,0,1)) € G2 5




Complex u, “breather”

It follows from the reduction group that the simpest
form
—k:S kAsk —lS ZA*SZ
XTT) =t z + z

—wkp A —wkp*

We start by assuming that A is a rank 1 matrix, A = nm?.



One can find that
N

2 = —1p*,,2 ~1 2
a=1F D;D? — EzEf{M Dini + (1)~ "Di(n;)
—p Emng — ()T Efnn}
where:
Nu ™ N)
D; = o(1),E; = p(1)
TN -1 b uPN -1

N . N |
O'(Z) — Z n%MQ{(z—k) mod N},p(i) — Z |nk|2lﬂ|2{(z_k) mod N}
k=1 k=1

Cs
Ci+41



N=5, Rank 1 solution

S




There are N(N — 1)/2 “simple” solitons corresponding
2-dimensional A-invariant subspaces of CN. In the basis
(ep), = wPF of eigenvectors Ae, = wPep.

ngq — apep —I_ Oéqeq, Op, &g c C



If ng = apep + ageq and pu = |ule®® then the width of the

soliton is AL where
pq

ANpg =2 (ﬁ — \Ml) sin (5 — W(p]\—lf_ q>> sin (W(q]\; p)>

Its speed is

qu:_4<| |+|u|> COS( W(p]\-fl-q)> cos (W(q]\?p)>

and it is shifted along the z-axis by

M)
0o __ log (\aq|

pq qu

)



N = 5, Classification of soliton configurations. Rank 1:

5 trivial (10000), (01000), (00100), (00010), (00001)

10 (1 % 000),...,(0010%),..., (0001%)

10 (1 %%00),...,(010%*x*),...,(001 x* %)

5 (Lx*%x0),...,(1*%0%),..., (01 * xx)

1 most generic solution | "' (1 % % x %)




N = 5, Schubert cells and classification of soliton con-
figurations. Rank 2:

: 1 0 *x *x
The generic cell (O 1« « *>

40 -30 -20 -10 0 10 20 30 40



1. Continuous limit (N — co,h = N~1) to KP, limit of
solutions, etc.

1 o(i+1)o(i—1) h2 92

¢; = o9 (D)2 gowrs loga(&,n, 7)

2. “Binary continuous” limit.

With p =& — 1, taking the limit as N — oo we obtain

6 = (—1) log <1 + p2 + (u? — 1) cos(2(p + p ) + 4y — 2a)>
T 14 p2 — (p2 — 1) cos(2(pu + p~1)z + 4ry — 20)

where y = 4.
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