# Formation of Singularities on the Interface of Dielectric Liquids in a Strong Vertical Electric Field

E. A. Kochurin & N. M. Zubarev

Institute of Electrophysics, UD, RAS, Ekaterinburg, Russia



#### Vertical electric field. Horizontal electric field.



$$\rho_{2} \varepsilon_{2} \qquad z = \eta(x, y, t)$$

$$\rho_{1} \varepsilon_{1} \qquad \rho_{1} > \rho_{2} \qquad E$$

The vertical electric field has a destabilizing effect on the interface of dielectric liquids.

As opposed to the vertical field, the horizontal electric field has a stabilizing effect on the interface.

We assume that both liquids are inviscid and incompressible, and the flow is irrotational (potential).

The functions  $\Phi_{1,2}$ ,  $\varphi_{1,2}$  are the velocity and electric field potentials.

#### Initial equations

$$\begin{split} \Delta\Phi_1 &= 0, \quad \Delta\varphi_1 = 0, \quad z < \eta(x,y,t), \\ \Delta\Phi_2 &= 0, \quad z > \eta(x,y,t), \\ \rho_1 \bigg( \frac{\partial\Phi_1}{\partial t} + \frac{(\nabla\Phi_1)^2}{2} \bigg) - \rho_2 \bigg( \frac{\partial\Phi_2}{\partial t} + \frac{(\nabla\Phi_2)^2}{2} \bigg) = \frac{\varepsilon_0(\varepsilon_2 - \varepsilon_1)}{2} \Big( E_1 E_2 - (\nabla\varphi_1 \cdot \nabla\varphi_2) \Big), \quad z = \eta(x,y,t), \\ \frac{\partial\eta}{\partial t} &= \frac{\partial\Phi_1}{\partial z} - (\nabla_\perp \eta \cdot \nabla_\perp \Phi_1) = \frac{\partial\Phi_2}{\partial z} - (\nabla_\perp \eta \cdot \nabla_\perp \Phi_2), \quad z = \eta(x,y,t), \\ \varphi_1 &= \varphi_2, \quad \varepsilon_1 \bigg( \frac{\partial\varphi_1}{\partial z} - (\nabla_\perp \eta \cdot \nabla_\perp \varphi_1) \bigg) = \varepsilon_2 \bigg( \frac{\partial\varphi_2}{\partial z} - (\nabla_\perp \eta \cdot \nabla_\perp \varphi_2) \bigg), \quad z = \eta(x,y,t). \end{split}$$

#### Conditions at infinity

#### 1. Vertical electric field:

$$\Phi_{1,2} \to 0, \qquad z \to \mp \infty,$$

$$\varphi_{1,2} \to -E_{1,2}z, \qquad z \to \mp \infty,$$

$$\varepsilon_1 E_1 = \varepsilon_2 E_2.$$

#### 2. Horizontal electric field:

$$\begin{split} \Phi_{1,2} &\to 0, & z \to \mp \infty, \\ \varphi_{1,2} &\to -Ex, & z \to \mp \infty, \\ E_1 &= E_2 \equiv E. \end{split}$$

#### Hamiltonian formalism

The equations of motion can be written in the Hamiltonian form [1,2]:

$$\psi_t = -\frac{\delta H}{\delta \eta}, \ \eta_t = \frac{\delta H}{\delta \psi}.$$

where  $\psi(x, y, t) = \rho_1 \phi_1 |_{z=\eta} - \rho_2 \phi_2 |_{z=\eta}$  and

$$H = \rho_1 \int_{z \le \eta} \frac{(\nabla \Phi_1)^2}{2} d^3 r + \rho_2 \int_{z \ge \eta} \frac{(\nabla \Phi_2)^2}{2} d^3 r$$
$$- \varepsilon_0 \varepsilon_1 \int_{z \le \eta} \frac{(\nabla \varphi_1)^2 - E_1^2}{2} d^3 r - \varepsilon_0 \varepsilon_2 \int_{z \ge \eta} \frac{(\nabla \varphi_2)^2 - E_2^2}{2} d^3 r.$$

- [1]. V.E. Zakharov, Prikl. Mekh. Tekh. Fiz. 2, 86 (1968).
- [2]. E.A. Kuznetsov, M.D. Spector, JETP 71, 22 (1976).

### Vertical electric field; the small-angle approximation

Let us pass to dimensionless variables:

$$\psi \to \psi \frac{E_1}{k} \sqrt{\varepsilon_0 \varepsilon_1 \rho_1}, \quad \eta \to \frac{\eta}{k}, \quad t \to \frac{t}{E_1 k} \sqrt{\frac{\rho_1}{\varepsilon_0 \varepsilon_1}}, \quad r \to \frac{r}{k}.$$

We consider that 
$$|\nabla_{\perp}\eta| \sim \alpha << 1$$
.

Expanding the integrand in the Hamiltonian in powers of the canonical variables up to the second- and third-order terms, we get:

$$H = \left(\frac{1+A}{4}\right) \int \left(\psi \hat{k}\psi - A\eta\left((\hat{k}\psi)^2 - (\nabla_{\perp}\psi)^2\right)\right) dx dy - \left(\frac{A_E^2}{1-A_E}\right) \int \left(\eta \hat{k}\eta + A_E\eta\left((\hat{k}\eta)^2 - (\nabla_{\perp}\eta)^2\right)\right) dx dy,$$

 $A = (\rho_1 - \rho_2)/(\rho_1 + \rho_2)$  is the Atwood number, and  $A_E = (\varepsilon_1 - \varepsilon_2)/(\varepsilon_1 + \varepsilon_2)$ is its analog for the dielectric constants.

Here 
$$\hat{k}f = -\frac{1}{2\pi} \iint \frac{f(x', y')}{\left[(x'-x)^2 - (y'-y)\right]^{3/2}} dx' dy', \qquad \hat{k}e^{ikr} = |\mathbf{k}|e^{ikr}.$$

## Vertical electric field; the small-angle approximation

The equations of motion:

$$\begin{split} \psi_{t} - \left(\frac{2A_{E}^{2}}{1 - A_{E}}\right) \hat{k} \eta &= \frac{A(1 + A)}{4} \left((\hat{k}\psi)^{2} - (\nabla_{\perp}\psi)^{2}\right) + \frac{A_{E}^{3}}{1 - A_{E}} \left((\hat{k}\eta)^{2} - (\nabla_{\perp}\eta)^{2}\right) + \left(\frac{2A_{E}^{3}}{1 - A_{E}}\right) \left(\hat{k}(\eta\hat{k}\eta) + \nabla_{\perp}(\eta\nabla_{\perp}\eta)\right), \\ \eta_{t} - \left(\frac{1 + A}{2}\right) \hat{k}\psi &= -\frac{A(1 + A)}{2} \left(\hat{k}(\eta\hat{k}\psi) + \nabla_{\perp}(\eta\nabla_{\perp}\psi)\right). \end{split}$$

Let us introduce the new functions  $f = (c\psi + \eta)/2$ ,  $g = (c\psi - \eta)/2$ . The equations take the form

$$\tau f_{t} - \hat{k}f = \frac{(A + A_{E})}{4} \Big[ (\hat{k}f)^{2} - (\nabla_{\perp}f)^{2} \Big] + \frac{(A - A_{E})}{2} \Big[ \hat{k}(f\hat{k}f) + \nabla_{\perp}(f\nabla_{\perp}f) \Big] + O(\alpha^{3}),$$

$$\tau g_{t} + \hat{k}g = \frac{(A + A_{E})}{4} \Big[ (\hat{k}f)^{2} - (\nabla_{\perp}f)^{2} \Big] + \frac{(A + A_{E})}{2} \Big[ \hat{k}(f\hat{k}f) + \nabla_{\perp}(f\nabla_{\perp}f) \Big] + O(\alpha^{3}).$$

Here 
$$c = \frac{\sqrt{(1-A_E)(1+A)}}{2|A_E|}, \quad \tau = \frac{1}{|A_E|}\sqrt{\frac{1-A_E}{1+A}}.$$

Two special cases:

1. 
$$A_E = +A \iff \rho_1/\rho_2 = \varepsilon_1/\varepsilon_2$$
,

2.  $A_E = -A \iff \rho_1/\rho_2 = \varepsilon_2/\varepsilon_1$ .

2. 
$$A_E = -A \Leftrightarrow \rho_1/\rho_2 = \varepsilon_2/\varepsilon_1$$
.

### Some pairs of immiscible dielectric liquids

| Lower | $\mathcal{E}_1$ | $\rho_1, kg/m^3$ | Upper<br>fluid | $\mathcal{E}_2$ | $\rho_2$ , $kg/m^3$ | $A_{\!\scriptscriptstyle E}$ | A     |
|-------|-----------------|------------------|----------------|-----------------|---------------------|------------------------------|-------|
| PMPS  | 2.7             | 1100             | spindle oil    | 1.9             | 870                 | 0.17                         | 0.12  |
| PMPS  | 2.7             | 1100             | linseed oil    | 3.2             | 930                 | -0.084                       | 0.084 |
| LH    | 1.05            | 125              | vacuum         | 1               | 0                   | -1 (formally)                | 1     |
| water | 81              | 1000             | air            | 1               | 1                   | 0.98                         | 1     |

Here PMPS is liquid organosilicon polymer, the polymethylphenylsiloxane; LH is liquid helium with the free surface charged by the electrons [3,4].

The conditions  $A_E = A$ , or  $A_E = -A$  are satisfied with acceptable accuracy for these pairs.

- [3]. N.M. Zubarev, JETP Lett. **71**, 367 (2000).
- [4]. N.M. Zubarev, JETP **94**, 534 (2002).

#### Dynamics of the interface for the case $A_E = A$

The equations of motion (compare with Refs. [5,6]):

$$\tau f_{t} - \hat{k}f = \frac{A}{2} \Big[ (\hat{k}f)^{2} - (\nabla_{\perp}f)^{2} \Big],$$

$$\tau g_{t} + \hat{k}g = \frac{A}{2} \Big[ (\hat{k}f)^{2} - (\nabla_{\perp}f)^{2} \Big] + A \Big[ \hat{k}(f\hat{k}f) + \nabla_{\perp}(f\nabla_{\perp}f) \Big].$$

2D geometry: 
$$\hat{k} = -\hat{H}\frac{\partial}{\partial x}$$
,  $\hat{H}\phi(x) = \frac{1}{\pi}p.v.\int_{-\infty}^{+\infty}\frac{\phi(x')}{x-x'}dx'$ , where  $\hat{H}$  is Hilbert transform.

The equations take the following form:

$$\tau F_{t} + iF_{x} = -AF_{x}^{2},$$

$$\tau G_{t} - iG_{x} = -AF_{x}^{2} + 2A\hat{P}(F\overline{F}_{x})_{x}.$$

Here  $F = \hat{P}f$ ,  $G = \hat{P}g$ , where  $\hat{P} = (1 - i\hat{H})/2$  is the projection operator. These functions are analytical in the upper half-plane of the complex variable x.

[5]. E.A. Kuznetsov, M.D. Spector, and V.E. Zakharov, Phys. Rev. E 49, 1283 (1994).[6]. N.M. Zubarev, JETP 114, 2043 (1998).

#### Dynamics of the interface for the case $A_E = A$

The equation on F transforms to the complex Hopf equation:

$$\tau V_t + iV_x = -2AVV_x, \qquad V = F_x.$$

Its solution has the form:

$$V = V_0(x'), \qquad x\tau = x'\tau + it + 2AV_0(x')t, \qquad V_0(x) = V|_{t=0},$$

The equation on G can be also solved:

$$G = \frac{1}{\tau} \int_{0}^{t} Q(x + it/\tau - it'/\tau, t') dt', \qquad Q(x,t) = -AF_{x}^{2} + 2A\hat{P}(F\overline{F}_{x})_{x}.$$

Weak root singularities are formed at the interface:  $z - z_c \sim -|x - x_c|^{3/2}$ .

For these singularities the curvature becomes infinite in a finite time, and the boundary remains smooth:

$$\eta_{x} \sim -(x - x_{c}) \cdot |x - x_{c}|^{-1/2},$$
 $\eta_{xx}(x, t_{c}) \sim -|x - x_{c}|^{-1/2},$ 
 $\eta_{xx}(x_{c}, t) \sim -(t_{c} - t)^{-1/2}.$ 



#### Dynamics of the interface for the case $A_F = -A$

The equations of motion: 
$$\begin{aligned} \tau f_t - \hat{k}f &= A \Big[ \hat{k} (f \hat{k} \hat{f}) + \nabla_{\perp} (f \nabla_{\perp} f) \Big], \\ \tau g_t + \hat{k}g &= 0. \end{aligned}$$

According to the second equation,  $g \rightarrow 0$ .

As a consequence, we can put  $\eta = \frac{(1+A)}{2A}\psi$ .

The equation of interface motion in 2D geometry:

$$\eta_t + A\hat{H}\eta_x = A^2 \left[ \hat{H} \left( \eta \hat{H} \eta_x \right)_x + \left( \eta \eta_x \right)_x \right].$$

It can be rewritten as 
$$F_t + iAF_x = 2A^2\hat{P}(F\overline{F}_x)_x$$
, where  $F = \hat{P}\eta$ .

This integro-differential equation can be reduced to the set of ordinary differential equations by the substitution:

$$F(x,t) = \sum_{n=1}^{N} \frac{iS_n/2}{x + p_n(t)}, \qquad \frac{dp_n}{dt} = -iA + iA^2 \sum_{j=1}^{N} \frac{S_j}{(p_n - \overline{p}_j)^2}, \qquad n = 1, 2, ..., N.$$

#### Dynamics of the interface for the case $A_{F} = -A$

Exact particular solution for N = 1:

$$\eta(x,t) = \frac{Sa(t)}{x^2 + a^2(t)}, \text{ where}$$

$$\eta(x,t) = \frac{Sa(t)}{x^2 + a^2(t)}, \quad \text{where} \quad a(t) + \frac{\sqrt{AS}}{4} \ln\left(\frac{2a(t) - \sqrt{AS}}{2a(t) + \sqrt{AS}}\right) = A(t_0 - t), \quad S > 0,$$

$$a(t) + \frac{\sqrt{A|S|}}{2} \arctan\left(\frac{2a(t)}{\sqrt{A|S|}}\right) = A(t_c - t), \quad S < 0.$$

$$a(t) + \frac{\sqrt{A \mid S \mid}}{2} \arctan\left(\frac{2a(t)}{\sqrt{A \mid S \mid}}\right) = A(t_c - t), \qquad S < 0.$$

The boundary shape becomes singular at some moment  $t = t_c$ :

$$\eta(x,t_c) = \lim_{a \to 0} \left( \frac{Sa}{x^2 + a^2} \right) = \pi S \delta(x), \qquad S < 0.$$

In the formal limit  $A \to 1$ ,  $\rho_2/\rho_1 \to 0$  the equation of motion is reduced to the Laplace Growth Equation [7]. It describes the formation of cusps at the interface in a finite time, or the formation of so-called "fingers" (see figures).







[7]. N.M. Zubarev, Phys. Fluids **18**, art. no. 028103 (2006).

# Horizontal electric field; the small-angle approximation

We consider that

$$|\nabla_{\perp}\eta|\sim\alpha<<1.$$

The Hamiltonian takes the following form:

$$H = \left(\frac{1+A}{4}\right) \iint \left[\psi \hat{k}\psi - A\eta\left((\hat{k}\psi)^{2} - (\nabla_{\perp}\psi)^{2}\right)\right] dxdy$$

$$+ \left(\frac{A_{E}^{2}}{1+A_{E}}\right) \iint \left[\eta_{x}\hat{k}^{-1}\eta_{x} + A_{E}\left(\eta\eta_{x}^{2} - \eta_{x}\hat{k}^{-1}\eta\hat{k}\eta_{x} + \eta_{x}(\nabla_{\perp}\eta \cdot \nabla_{\perp}\hat{k}^{-1}\eta_{x})\right)\right] dxdy.$$

The equations of motion:

$$\begin{split} \psi_{t} - \left(\frac{2A_{E}^{2}}{1+A_{E}}\right) \hat{k}^{-1} \eta_{xx} &= \frac{A(1+A)}{4} \left[ (\hat{k}\psi)^{2} - (\nabla_{\perp}\psi)^{2} \right] \\ &+ \left(\frac{A_{E}^{2}}{1+A_{E}}\right) \left[ \eta_{x}^{2} + 2\eta \eta_{xx} + (\nabla_{\perp}\hat{k}^{-1}\eta_{x})^{2} - \hat{k}^{-1}\partial_{x} \left( \eta \hat{\eta}_{x} - \nabla_{\perp}\eta \cdot \nabla_{\perp}\hat{k}^{-1}\eta_{x} \right) \right], \\ \eta_{t} - \left(\frac{1+A}{2}\right) \hat{k}\psi &= -\frac{A(1+A)}{2} \left[ \hat{k}(\eta \hat{k}\psi) + \nabla_{\perp}(\eta \nabla_{\perp}\eta) \right]. \end{split}$$

#### Dynamics of the interface

The equation for the interface evolution:

$$\begin{split} \eta_{tt} - v_0^2 \eta_{xx} &= \frac{\hat{k}}{2} \Big( v_0^2 A_E \eta_x^2 - A \eta_t^2 \Big) + \hat{k} \Big( v_0^2 A_E \eta \eta_{xx} - A \eta \eta_{tt} \Big) + \frac{\hat{k}}{2} \Big[ v_0^2 A_E (\nabla_\perp \eta_x)^2 - A (\nabla_\perp \eta_t)^2 \Big] \\ &+ \nabla_\perp \Big[ v_0^2 A_E \partial_x (\eta \nabla_\perp \hat{k}^{-1} \eta_x) - A \partial_t (\eta \nabla_\perp \hat{k}^{-1} \eta_t) \Big]. \end{split}$$

Here  $v_0 = A_E \sqrt{(1+A)/(1+A_E)}$  is the velocity of linear waves.

Linear approximation:  $\eta_{tt}$ 

$$\eta_{tt} = v_0^2 \eta_{xx}.$$

General solution of the linear wave equation:

$$\eta(x, y, t) = f(x - v_0 t, y) + g(x + v_0 t, y).$$

Lets us consider the special case

$$A=A_E$$
.

The equation of motion admits two exact particular solutions:

$$\eta(x, y, t) = f(x - At, y),$$
  

$$\eta(x, y, t) = g(x + At, y).$$

#### Interaction of counter-propagating waves

The approximate solution of the equations of motion has the form:

$$\eta(x, y, t) = f(x - At, y) + g(x + At, y) - \frac{A}{2}\hat{k}(fg + \nabla_{\perp}\hat{k}^{-1}f \cdot \nabla_{\perp}\hat{k}^{-1}g)$$
$$-\frac{A}{2}\nabla_{\perp}(f\nabla_{\perp}\hat{k}^{-1}g + g\nabla_{\perp}\hat{k}^{-1}f) + O(\alpha^{3}).$$

This formula describes the nonlinear superposition of the oppositely directed waves.

Interaction of the plane solitary waves:

$$f(x) = g(x) = \frac{0.5}{(1+x^2)}$$
$$A = A_E = 1$$



#### Interaction of two 3D solitary waves

$$A = A_E = 0.5$$

$$f(x, y) = \exp(-x^2 - y^2),$$
  $g(x, y) = -\exp(-x^2 - y^2).$ 





### Interaction of two 3D solitary waves



#### Interaction of two 3D solitary waves



#### Conclusion

The nonlinear dynamics of the interface between two ideal dielectric liquids in an external electric field was considered. A number of particular cases, where the evolution of the interface can be effectively studied analytically, were revealed.

|                                                         | ectric field<br>e is unstable)                             | Horizontal electric field (the interface is linearly stable) |                                                                                |  |
|---------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| $A_{\!\scriptscriptstyle E}=A$                          | $A_E = -A$                                                 | $A_{\!\scriptscriptstyle E}=A$                               | $A_E = -A$                                                                     |  |
| Formation of weak (root) singularities at the interface | Formation of strong singularities (cusps) at the interface | Nondispersive propagation of weakly nonlinear waves          | The problem becomes intergrable if upper fluid moves relative to the lower one |  |
| The small angle approximation is valid                  | The small angle approximation is violated                  | The small angle approximation is valid                       | The equations admit nonsingular exact solutions                                |  |

# Thank you for attention!