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General context

I Lax pairs in terms of vector �elds (di�. operators of the �rst order) �

Zakharov, Shabat (1979)
I Di�erential reductions, N-orthogonal coordinate systems � Zakharov

(1998). The works of Kyoto school on KP hierarchy reductions (BKP,

CKP, etc.)
I Dispersionless limit of integrable systems in (2+1)
I Integrable systems of twistor theory, Pleba�nski heavenly equations and

generalizations, hyper-K�ahler hierarchies � multidimensional integrable

models
I Manakov-Santini hierarchy: generalizes dKP, it is a simplest

non-degenerate example of the hierarchy for general vector �elds.

Dressing method, inverse scattering method for vector �elds
I Dunajski interpolating system � describes "a symmetry reduction of

the anti-self-dual Einstein equations in (2, 2) signature by a conformal

Killing vector whose selfdual derivative is null". On the other hand, it

is a simple di�erential reduction of the Manakov-Santini system

L.V. Bogdanov (L.D. Landau ITP RAS) Novosibirsk 2012 2 / 23
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Recent results on Dunajski-Tod equation and reductions of the generalized

dispersionless 2DTL hierarchy, preprint arXiv:1204.3780
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Introduction
The equation locally describing general ASD vacuum metric with conformal

symmetry (Dunajski and Tod, 1999)

(ηFw̃ + Fuw̃ )(ηFw − Fuw )− (η2F − Fuu)Fww̃ = 4e2ρu. (DT )

The equation describing ASD Ricci-�at metric with a conformal Killing

vector whose self-dual derivative is null is a simple di�erential reduction of

the Manakov-Santini system (two-component generalization of dKP)

(Dunajski 2008).

A scheme of constructing a class of di�erential reductions for the

Manakov-Santini hierarchy (Bogdanov 2008) and general multicomponent

case (Bogdanov 2011).

A two-component generalization of the dispersionless 2DTL equation

(Bogdanov 2010) and its di�erential reduction

mtt = (mt)
1
α (mtymx −mxymt). (∗)

Equations (DT ) and (∗) are equivalent up to Legendre transform.
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The Manakov-Santini system
The Manakov-Santini system � two-component integrable generalization of

the dKP equation,

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vxt = vyy + uvxx + vxvxy − vxxvy .

Lax pair

∂yΨ = ((p − vx)∂x − ux∂p)Ψ,

∂tΨ = ((p2 − vxp + u − vy )∂x − (uxp + uy )∂p)Ψ,

where p plays a role of a spectral variable. For v = 0 reduces to dKP

(Khohlov-Zabolotskaya equation)

uxt = uyy + (uux)x ,

reduction u = 0 gives the equation (Pavlov, Martinez Alonso and Shabat)

vxt = vyy + vxvxy − vxxvy .
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Dunajski interpolating system
The condition used by Dunajski (JPA 2008) to reduce the Manakov-Santini

system to the interpolating system

αu = vx ,

The reduced MS system can be written as deformed dKP,

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vx = αu,

it also implies a single equation for v ,

vxt = vyy + α−1vvxx + vxvxy − vxxvy .

The limit α→ 0 corresponds to dKP, α→∞ � to equation, introduced by

Pavlov, Martinez Alonso and Shabat

Dunajski interpolating system describes "a symmetry reduction of the

anti-self-dual Einstein equations in (2, 2) signature by a conformal Killing

vector whose selfdual derivative is null".
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Two-component generalization of d2DTL hierarchy
Two-component generalization of the dispersionless 2DTL equation (L.V.

Bogdanov, JPA 43 (2010) 434008)

(e−φ)tt = mtφxy −mxφty ,

mtte−φ = mtymx −mxymt .

The Lax pair

∂xΨ =

(
(λ+

mx

mt
)∂t − λ(φt

mx

mt
− φx)∂λ

)
Ψ,

∂yΨ =

(
− 1

λ

e−φ

mt
∂t −

(e−φ)t

mt
∂λ

)
Ψ

For m = t the system reduces to the dispersionless 2DTL equation

(e−φ)tt = φxy ,

The reduction φ = 0 gives an equation (Pavlov; Shabat and Martinez

Alonso)

mtt = mtymx −mxymt .
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Di�erential reductions in terms of the Lax pair
The Lax pair

∂xΨ = ÛΨ,

∂y Ψ = V̂ Ψ, (1)

where Û = u1∂t + u2λ∂λ, V̂ = v1∂t + v2λ∂λ are vector �elds.

More generally, a one-parametric family of Lax pairs

∂xΦ = ÛΦ + β div ÛΦ,

∂y Φ = V̂ Φ + β div V̂ Φ, (2)

where β is a parameter, div Û = ∂tu1 + λ∂λu2, div V̂ = ∂tv1 + λ∂λv2.

In terms of ln Φ, takes a form of nonhomogeneous linear system

∂x ln Φ = Û ln Φ + β div Û,

∂y ln Φ = V̂ ln Φ + β div V̂ , (3)
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The Poisson bracket {f , g} = λ(fλgt − ftgλ) of two solutions of the

standard Lax pair J = {Ψ1,Ψ2}, satis�es the system

∂x ln J = Û ln J + div Û,

∂y ln J = V̂ ln J + div V̂ , (4)

The general solution of the system (1) is of the form F (Ψ1,Ψ2), the
general solution of nonhomogeneous one-parametric linear system (3) is

β{Ψ1,Ψ2}+ f (Ψ1,Ψ2), and the general solution of the one-paremetric

system (2) is Φ = exp(β{Ψ1,Ψ2})F (Ψ1,Ψ2). Suggesting the existence of

solution f with some special analytic properties in λ for the Lax pairs (2) or

(3), we will obtain one-parametric interpolating reduction, which for β = 0
implies the existence of solution f for standard Lax equations

(Gelfand-Dikii type reduction), and in the limit β →∞ corresponds to

Hamiltonian (divergence-free) vector �elds.
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A simplest interpolating reduction
We de�ne a simplest interpolating reduction by the condition that

one-parametric Lax equations (2) possess a solution f = λ (equivalently,

equations (3) possess a solution lnλ and equations (4) � solution −α lnλ,
α = −β−1.) An explicit form of equations (3) is

∂xΦ =

(
(λ+

mx

mt
)∂t − (φt

mx

mt
− φx)λ∂λ

)
Φ + β∂t

mx

mt
,

∂yΦ =

(
− 1

λ

e−φ

mt
∂t −

1

λ

(e−φ)t

mt
λ∂λ

)
Φ− β e−φ

λ
∂t

1

mt
, (5)

the substitution of solution lnλ to both equations gives the same reduction

condition

eαφ = mt , α = −β−1,

This reduction makes it possible to rewrite the d2DTL system as one

equation for m,

mtt = (mt)
1
α (mtymx −mxymt), (∗)
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or in the form of deformed d2DTL equation,

(e−φ)tt = mtφxy −mxφty ,

mt = eαφ.

The limit α→ 0 gives the d2DTL equation, the limit α→∞ gives the

equation introduced by Pavlov; Shabat and Martinez Alonso.

Equation (∗) is connested with the generalization of a dispersionless (1 +

2)-dimensional Harry Dym equation, Blaszak (2002), and also with an

equation describing ASD vacuum metric with conformal symmetry,

Dunajski and Tod (1999) (see below)
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Legendre transform and Dunajski-Tod equation
Equation (∗) can be represented in exterior di�erential form

β−1dmβ
t ∧ dx ∧ dy = dmy ∧ dm ∧ dy , (6)

where β = 1− α−1.

Let us consider a Legendre type transform (where τ is a new independent

variable and M is a new dependent variable)

mt = eτ , M = m − teτ .

Di�erential of M is of the form

dM = Mxdx + Mydy − teτdτ.

Transformed equation (6) reads

β−1deβτ ∧ dx ∧ dy = dMy ∧ dM ∧ dy − dMy ∧ dMτ ∧ dy ,

and transformed equation (∗) looks like

eβτ = (MyτMx −MyxMτ )− (MyτMxτ −MyxMττ ). (7)
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Scaling the time τ → 2τ , we get

4e2βτ = 2(MyτMx −MyxMτ )− (MyτMxτ −MyxMττ )

In terms of the function F = e−τM

(Fy + Fyτ )(Fx − Fxτ )− (F − Fττ )Fxy = 4e−2α−1τ .

Considering the scaling x → η−1x , y → η−1y , τ → ητ , we obtain
Dunajski-Tod equation

(ηFy + Fyτ )(ηFx − Fxτ )− (η2F − Fττ )Fxy = 4e2ρτ , (DT )

where ρ = −α−1η.
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Generalized dispersionless Harry Dym equation and d2DTL

interpolating equation
Generalized dispersionless Harry Dym equation constructed by Blaszak

(2002) can be written in the form of conservation law,

∂tu
2−r =

(3− r)

(r − 1)(r − 2)

(
u2−r∂−1

x ∂yur−1
)
y
, (8)

r is integer, r ∈ Z. This equation suggests the existence of potential v ,
such that

∂yv = u2−r ,

∂tv =
(3− r)

(r − 1)(r − 2)
u2−r∂−1

x ∂yur−1,

and for the potential we get an equation

(3− r)

(r − 1)(r − 2)
vyy = v

r−3
2−r
y (vxtvy − vtvxy ),

which after the change of variables y → t, x → y , t → x is equivalent to

equation (∗) with α = 2−r
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Interpolating reductions: general construction

The generalized dispersionless 2DTL hierarchy

We consider formal series

Λout = lnλ+
∞∑

k=1

l+
k λ
−k , Λin = lnλ+ φ+

∞∑
k=1

l−k λ
k ,

Mout = Mout
0 +

∞∑
k=1

m+
k e−kΛout

, M in = M in
0 + m0 +

∞∑
k=1

m−k ekΛin
,

M0 = t +
∞∑

k=1

xkekΛ −
∞∑

k=1

yke−kΛ, (9)

where λ is a spectral variable, t, xk , yk are considered independent

variables, and other coe�cients of the series (φ, m0, l±k , m±k ) � dependent

variables. Usually we suggest that `out' and `in' components of the series

de�ne the functions outside and inside the unit circle in the complex plane

of the variable λ respectively.
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Generalized dispersionless 2DTL hierarchy is de�ned by the generating

relation

({Λ,M}−1dΛ ∧ dM)out = ({Λ,M}−1dΛ ∧ dM)in. (10)

The di�erential d is given by

df = ∂λf dλ+ ∂t f dt +
∞∑

k=1

∂+
k f dxk +

∞∑
k=1

∂−k f dyk , (11)

where ∂+
k f = ∂f

∂xk
, ∂−k f = ∂f

∂yk
. As a result of condition (10), the coe�cients

of the di�erential two-form in the generating relation (10) are meromorphic.

Generating equation (10) implies Lax-Sato equations of the hierarchy:(
∂+

n −
(

enΛλ∂λΛ

{Λ,M}

)out

+

∂t +

(
enΛ∂tΛ

{Λ,M}

)out

+

λ∂λ

)(
Λ
M

)
= 0, (12)(

∂−n +

(
e−nΛλ∂λΛ

{Λ,M}

)in

−
∂t −

(
e−nΛ∂tΛ

{Λ,M}

)in

−
λ∂λ

)(
Λ
M

)
= 0, (13)

where (. . . )−, (. . . )+ are standard projections respectively to negative and

nonnegative powers of λ.
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Interpolating reduction for the hierarchy
Rewriting Lax-Sato equations symbolically as

(∂+
n − Ûn)

(
Λ
M

)
= 0, (∂−n − V̂n)

(
Λ
M

)
= 0, (14)

Non-homogeneous linear equations for the Jacobian J0 = {Λ,M}

∂+
n ln J0 = Ûn ln J0 + div Ûn,

∂−n ln J0 = V̂n ln J0 + div V̂n. (15)

We de�ne interpolating reduction for the hierarchy by the condition

(ln J0 − αΛ)out = (ln J0 − αΛ)in (16)

This relation implies that

(ln J0 − αΛ) = −α lnλ, (17)

thus nonhomogeneous linear equations of the hierarchy possess a solution

f = −α lnλ.
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Substituting the expression for the Poisson bracket implied by relation (17),

J0 = {Λ,M} = λ−α exp(αΛ),

to the generating relation (10), we obtain the generating relation for the

reduced hierarchy

(exp(−αΛ)dΛ ∧ dM)out = (exp(−αΛ)dΛ ∧ dM)in.

The Lax-Sato equations for the reduced hierarchy read(
∂+

n −
(
λαe(n−α)Λλ∂λΛ

)out
+
∂t +

(
λαe(n−α)Λ∂tΛ

)out
+
λ∂λ

)(
Λ
M

)
= 0,(

∂−n +
(
λαe(−n−α)Λλ∂λΛ

)in
−
∂t −

(
λαe(−n−α)Λ∂tΛ

)in
−
λ∂λ

)(
Λ
M

)
= 0.

Similar to d2DTL hierarchy, Lax-Sato equations for Λ split out, having no

interaction with M.
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The characterization of reductions in terms of the dressing

data

A dressing scheme for the two-component 2DTL hierarchy

Λin = F1(Λout,Mout),

M in = F2(Λout,Mout),

Λin(λ, t), M in(λ, t) are analytic inside the unit circle with punctured zero,

the functions Λout(λ, t), Mout(λ, t) are analytic outside the unit circle with

prescribed singularities de�ned by the series.

The Riemann problem implies that the di�erential form

Ω0 =
dΛ ∧ dM

{Λ,M}

is meromorphic and the generating relation for the hierarchy.
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To provide the generating relation for the reduced hierarchy

(exp(−αΛ)dΛ ∧ dM)out = (exp(−αΛ)dΛ ∧ dM)in,

the Riemann-Hilbert problem should be area-preserving in tefms of the

variables

f1(Λ,M) = Λ, f2(Λ,M) = e−αΛM,

or, symbolically,

(Λin,M in) = F(Λout,Mout),

the reduction condition for the dressing data reads

f ◦ F ◦ f−1 ∈ SDi�(2).

(a twisted area-preservation condition). Another choice of f leads to higher

reductions.
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Higher reductions

We de�ne higher interpolating reductions by the condition

(ln J0 − aLn − bL−n)out = (ln J0 − aLn − bL−n)in,

where L = eΛ.

Reduction condition (18) implies the expression for the Poisson bracket,

J0 = {Λ,M} = exp(aLn + bL−n − aLn
+ − bL−n

− ), (18)

which is valid for both 'in' and 'out' components. The generating relation

for the reduced hierarchy

(exp(−aLn − bL−n)dΛ ∧ dM)out = (exp(−aLn − bL−n)dΛ ∧ dM)in.

Lax-Sato equations for Λ split out, similar to d2DTL hierarchy.

L.V. Bogdanov (L.D. Landau ITP RAS) Novosibirsk 2012 21 / 23



A case n = 1

Let us consider a case n = 1 in more detail. Nonhomogeneous Lax-Sato

equations (15) in this case possess a rational solution

f = −aL+ − bL−1
− = −a(λ+ l+

1 )− b
e−φ

λ

The simplest form of the di�erential reduction for the d2DTL system reads

mtt = a(φtmx − φxmt)− b(mt)2φy .

However, in this form the di�erential relation contains all the variables x ,
y , t. It is possible rewrite it in equivalent form in (x , t) plane or (y , t)
plane. The di�erential reduction in (y , t) plane reads

∂y∂t ln mt = −a∂t

(
(e−φ)t

mt

)
− b∂y (mtφy ).
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Considering this reduction together with interpolating reduction eαφ = mt ,

we obtain a (1+1)-dimensional system which represents a reduction of

equation (∗) and can be rewritten as (1+1)-dimensional equation for the

function m

amtt = (mt)
1
α

+1(αmty + bmyymt). (19)

It is possible to transform this equation to the system of hydrodynamic

type.

The di�erential reduction in (x , t) plane reads

∂t

(
a
mx

mt
(φt

mx

mt
− φx) + ∂t

mx

mt
+ b(e−φ)t

)
− a∂x

(
φt

mx

mt
− φx

)
= 0.

Together with interpolating reduction, it forms a (1+1)-dimensional system

representing a reduction of equation (∗),

bmttm
− 1

α
−1

t − α∂t
mx

mt
+ a

(
mx

mt
∂t − ∂x

)
mx

mt
= 0. (20)

A common solution of (1+1)-dimensional equations (19), (20) gives a

solution of equation (∗).
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