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Statement of the problemStatement of the problem
• A two-dimensional a thin horizontal 

layer of a viscous  fluid with thermal  
inhomogeneity in the presence of 
gravity force is considered. 

• Liquid layer  bounded 
by a planar solid substrate from below 
and by a free surface from above.

• The bottom temperature           is assumed to be constant and more that the gas 
temperature    

• The interfacial tension  liquid-gas interface

are positive constants.

• The characteristic disturbance amplitude of free surface  u(x,y,t)  is much less 

than the average layer thickness  h.
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In the thin layer approximation the Rayleigh-Benard problem with the 
condition                on the free surface is investigated.
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Cauchy problemCauchy problem

2 2
0( ) 0; ( , ), 0       tu u u u u u x y t

), and 
is  the  Bond   number

The evolution of the non-dimensional deviation of a free boundary from 
a horizontal equilibrium state  u(x,y,t) can be described in terms of 
Cauchy problem solutions for the equation of Cahn-Hilliard kind

(1)

(2)“Mass” conservation law

• double periodic function, or
• rapidly decreasing function at x, y →∞
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Space-periodic solutions of Cauchy problem and rapidly decreasing 
solutions at infinity are studied.

Global existence of periodic solutionGlobal existence of periodic solution
1{ , : 0 2 ,0 2 }, 1x y x y        

ε=ε(β,κ)  is sufficient small positive number
Let                        and                         where    is the subspace of 
Sobolev space formed by periodic function.

If  β > -1, Cauchy problem (1) has a unique generalized solution   

There exist constants  γ ϵ (0,1+β)  and  C > 0 independante of  t such that 
the estimate                              is true for any fixed t > 0.

The condition of smallness                is essential for the global existence of 
solution of problem (1). Solution having a “large” initial norm can be 
destroyed for a finite time.
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SelfSelf--similar solutions of similar solutions of 
axially symmetric problemaxially symmetric problem
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Singular points:   regular point  ξ = 0  and  irregular point  ξ = ∞. 

We seek non-trivial solutions that are defined for all ξ > 0, regular at ξ → 0, 
and rapidly decreasing at ξ → ∞. Such solutions form one-parameter family 
with the parameter  c, where
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Fig. 1. Curve Γ is a double-valued function λ= f(0) of the parameter c.

Axially symmetric self-similar solutions
exist at small values of |c|,
do not exist for large and positive c,

22 (0) (0)
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Fig. 2. λ= 0.860

Fig. 4. c = -6; λ= 5.019 Fig. 5. c = -6; λ= -1.122

* 0.8155; c c Fig. 3. c = 0; λ= 2.057
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SelfSelf--similar solutions of plane problemsimilar solutions of plane problem
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φ(η) is even function



99

LyapunovLyapunov functionalfunctional

2 2( ) | [ ( / 2) ] |
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Second variation
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Gradient form

Each stationary solution        of equation (1)  is the extremal point for the functional  
S(u). Critical points of  S  are saddle points as a rule.

(5)

su
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Stationary  solutionsStationary  solutions

 cnoidal waves,

 Korteweg and de Vries solitons, 

 axially symmetric solitons,

 travelling waves do not exist, 

23 /(2cosh ( / 2)) su x
2 2( ) su g x y

Sufficient condition for stability of the stationary solution Sufficient condition for stability of the stationary solution 

2 1  su

Stationary solution of Eq. (1) may be found as a solution of the evolutionary 
problem.

(6)
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1111

Evolutionary  problem Evolutionary  problem 
22ππ--periodic  initial  functionperiodic  initial  function
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Fig. 7. (a) t=0, (b) t=1, (c) t=5. 

Fig. 8. (a) x=0,  x=2π,                             (b) x=π.
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Evolutionary  problem Evolutionary  problem 
nonnon--periodic  initial  functionperiodic  initial  function
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Fig. 9. (a) t = 0, (b) t = 5, (c)  t = 10,                      (d) t = 20. 

Fig. 10. (a) x = 0,                            (b) x = 5,                                   (c) x = 10.
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Collapsing  solutionsCollapsing  solutions
The behavior of Cauchy problem solutions (1) are following: 

 where         is some stationary solution, or 

 its solution is destroyed for a finite or infinite time. 

when , su u t

Sufficient condition of collapse existenceSufficient condition of collapse existence

Proposition. Let initial function                       satisfied the inequality

There exist such                that for solution   u  of Cauchy problem  (1) 
we have
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su

The inequality  (11)  can not  be fulfilled for   “small” data         and also for odd 
function        
Solutions having a “large” initial norm can be destroyed for a finite time.

0.u
0 ,u
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Simple  example   (Simple  example   (ββ = 0= 0))
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Numerical calculations show that the solution of a non-periodic  problem 
collapses for finite time. 
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ConclusionsConclusions

 The sufficient instability condition of the equilibrium has been
obtained in the framework of the long-wave approximation. 
 The sufficient condition of the global solution existence of problem (1) 

and its collapse for a finite time for the periodic initial function has 
been formulated. 
 Analytical and numerical research shows that axially symmetric self-

similar solutions exist at small values of |c|, where  c is a constant in 
mass conservation law (2), and they do not exist for large and positive  
c. For negative values of  c there were found two branches of self-
similar solutions with various qualitative behaviors. Such solutions 
form one-parameter family with the parameter c. 
 The self-similar solutions of the plane problem satisfying the 

conservation law exist only for  c = 0.
 Korteweg and de Vries solitons,  axially symmetric solitons, cnoidal

waves are stationary solutions of the problem. 
 There are no nontrivial stationary solutions in the form of travelling

waves.
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Thank you for your attention!Thank you for your attention!


