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Alfvén waves are ubiquitous in space and astrophysical plasmas
(mostly because only weakly dissipated and can thus propagate on long distances).

Possibly contribute to the heating of solar corona.  

Very intermittent structures: myriad of coronal loops; 
permanent impulsive reorganization
of magnetic structures.

Sun: magnetic structures
Distribution of flares
(observations in hard X-rays)
Crosby et al. 
Solar Phys. 143, 275 (1993)

Merciet and Trotte, 
ApJ 474, L65 (1997)

At much smaller energies
(1021 ergs) the power law has
a much steeper slope.

Coronal nanoflares are related to intermittent dissipative events
in MHD turbulence and might contribute to coronal heating.

Question: Role played by Alfvén waves in these phenomena?

Requires progress in the understanding of Alfvén wav e dynamics.

power
law



Outline

1) Model equations for nonlinear Alfvén waves:
● Derivative nonlinear Schrödinger equation for dispersive Alfvén waves
● Cohen-Kulsrud equation for non-dispersive Alfvén waves: 

a paradigm of non strictly hyperbolic system.

2) Non-dispersive regime
Viscous instability and (quasi) gradient-collapse of intermediate shocks,
Reconnection and polarization reversal (associated with phase-jump reduction).
Time-intermittency of dissipation in the turbulent regime.

3) Influence of dispersion
Competition between dissipation and dispersion. 
Formation of dark or (oblique) bright solitons, 
Reconnection and/or amplitude collapse: phase jump reduction.
Formation of huge Alfvenic rogue waves in the turbulent regime.

4) Conclusion
In all these regimes, breaking of a topological constraint through violent events, 
needed for significant dissipation.



Starting point: Hall-MHD equations

In the presence of an ambient field, the Hall term
induces dispersive effects .

Hall term

Focus on the Alfvén wave dynamics can be made by using a long-wavelength 
reductive perturbative expansion (assume small-amplitude weakly dispersive waves).

For waves propagating parallel or quasi-parallel to the ambient field:

derivative nonlinear Schrödinger equation (DNLS).

DNLS equation also valid in any oblique direction in the large β limit (Ruderman, JPP 67, 271, 2002)

Reductive perturbative expansion

The model equations

Originates from writing Ohm’s
law as: E=-vexB
Accounts for electron-ion decoupling



� Weakly nonlinear, weakly dispersive regime:

�Slaved sonic waves :

ambient field B0

making an angle with x

x -> direction of propagation of the waves
(quasi-parallel or parallel propagation) 

transverse component of the ambient field 
(included in the initial conditions)

Derivative nonlinear Schrödinger(DNLS) equation Integrable by Inverse Scattering Transform
(Kaup& Newell 1978, Gerdzhikov et al. 1980, 
Kawata & Inoue 1978, Chen & Lam 2004) for 
both zero BC (parallel propagation) and non 
zero BC (weakly oblique propagation).Instantaneous space average



In a collisionless plasma : Landau damping

derived from Vlasov-Maxwell equations 
(Rogister 1971, Mjolhus & Wyller 1988, Passot & Sulem PoP 2003) 

In a collisional plasma: viscosity and magnetic diffusivity

Kinetic DNLS (KDNLS) equation

When viscosity but no dispersion (δ=0): Cohen-Kulsrud equation.
A prototype of non strictly hyperbolic system.

σ is a small positive parameter
that depends on the particle distributions and
vanishes in the limit of cold plasmas

Retaining dissipation processes



The non dispersive regime: Cohen Kulsrud equation

Paradigm for non strictly hyperbolic systems.
Rankine-Hugoniot (RH) conditions do not uniquely specify shock dynamics. 
Zero-viscosity limit is not necessarily well defined.

• With no dissipation: two sets of RH jump conditions:

One connects two states in which only the phase θ changes (rotational discontinuities).

The other connects two among three states in such a way that either only the amplitude
|b| changes (fast shocks)  or both |b| and θ change (intermediate shocks, that only 
exists for a phase jump  |∆θ|=π). 

• With viscosity , intermediate and fast shocks persist and transform into structures
characterized by a finite width,  while rotational discontinuities cannot exist anymore. 

Finite-dissipation intermediate shocks with a phase jump |∆θ|=π (the only one that can
propagate without distortion) are not uniquely specified by the RH conditions. 

Intermediate shocks with | ∆θ| ≠π change shape.

α= 1/[4(1−β)]; In the following, β< 1 and thus α> 0.

Previous studies mostly concern Riemann problem
(Kennel et al. 1990, Wu & Kennel, 1992, 1993, Wu 2003). 



►Intermediate shocks with angular jump  |∆θ| <π broaden.

►Intermediate shocks with |∆θ| >π are unstable:
front steepens and amplitude jump increases
up to

• the formation of a neutral point for the b field 
(reconnection) 

• a change in the wave polarization with a phase 
jump reduced by 2 π.

• A fast shock is simultaneously emitted, and the 
intermediate shock, now with |∆θ| <π, slowly
dissipates.

Arrows indicate emitted fast shocks

Evolution from a rotational discontinuity

At least not too close to the collapse time, the amplitude is
slaved to the phase (supported by numerics):

|b
|



(when a large-scale random driving is supplemented to the  CK equation)

Phase jumps without appreciable amplitude variations arise under the action of the forcing.  

These structures which are in fact intermediate shocks
propagate and either diffuse (if |∆θ| < π) or steepen (if |∆θ| > π) 
on a  timescale O(1/η), at least far enough from reconnection. 

Evolution time scale increases 
as |∆θ| approches π, which
favors phase jumps of order π

Probability distribution of phase jumps
in a turbulence simulation.

The turbulent regime



Snapshot of by and bz components

Snapshot of the amplitude (solid line) 
and phase (dash line)

F: fast shock
I: Intermediate shock
EF: emitted fast shock

Intermediate-shock instability:
Very similar to the deterministic case:   

Phase reverses near time t2
(phase jump reduced by 2π)
Reconnection
Emission of a fast shock

Energy spectrum
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Intermediate-shock instability also arises in turbu lent regime

Two dissipation zones, associated 
with intermediate and fast shocks 
(except at the reconnection time).



Energy dissipation

The dissipation                                   can be 
separated in two parts:

The total dissipation D(t)  is strongly intermittent:
background + isolated intense peaks associated
with instabilities of intermediate shocks. 

detail

Bottom panel: between dissipation bursts, 
dissipation is mostly due to fast shocks.

Total dissipation D (black) 
and its components 
DB (red) and  D

θ
(green).



Total dissipation for various viscosities

η = 10-3

η = 4. 10-4

η = 2. 10-4

η = 1. 10-4

For comparison: Burgers equation,

When viscosity is decreased,
dissipation bursts are less
frequent but more intense.

Histograms of the dissipation

η = 10-3

η =10-4

-4

about 10 %
of total dissipation

D
(t

)

well defined limit 
as ν→ 0

power law



Energy

η = 10-3

η = 4. 10-4

η = 2. 10-4

η =  10-4

For comparison: 

Burgers equation

Energy is sensitive
to viscosity

Decreasing η, 
strongly enhances
energy fluctuations.

Fast shocks are not sufficient 
to dissipate energy at the rate 
it is injected. 

Energy accumulates in large-
scale coherent structures
delimited by intermediate 
shocks.

Well defined limit 
when ν→ 0.



Influence of dispersion
With dispersion, the early evolution of a rotational discontinuity depends on the sign of the phase gradient.

Negative phase gradient Positive phase gradient

Increasing dispersion 
increases the overshoot.

Increasing viscosity 
increases the strength of the 
intermediate shock.

|b|

|b|

amplitude hole amplitude hump

η = 5.10-5

η = 2.10-4

η = 10-3

δ = 5.10-3

η = 2.10-4

δ = 0
δ = 10-3

δ = 5.10-3



"Weak" dispersion: both intermediate and emitted fast shocks are preserved 
but overshoots develop

t = 19.36 t = 19.38 t = 19.46

(phase jump : 1.1 π, δ =10-3, η = 10-4)

by

bz

|b|

θ

fast shock

Phase reversal 
Emission of a fast shockSimilar dynamics when the initial

phase jump is reversed.



Larger dispersion: negative phase gradient: (∆θ=-1.1 π, δ= 5. 10-3, η=10-5)
t=100

t=1308

t=1311

t=1343

Formation of a dark soliton

by

bz

θ

|b|

that undergoes reconnection

and then rapidly dissipates
(no phase jump) .



Same dispersion : positive phase gradient: (∆θ=1.1 π, δ= 5. 10-3, η=10-5)

t=25

t=850

t=855.57813

t=855.65039

t=855.61328

t=855.61914

t=855.63086

t=855.844

Formation of an

amplitude hump

Evolution to an "oblique" bright soliton
and then to a breather .
Strong amplitude growth (collapse )

Several phase jumps as time evolves

The breather becomes a wave packet .
Eventually, no phase jump
and the structure dissipates .2π

π

θ
|b|



δ=10-3

η=10-3

δ=10-3

η=2.10-4

δ=5.10-3

η=10-3

δ= 5. 10-3

η= 2.10-4

Positive 
phase jump

Negative
phase jump

Increase dispersion
D

ec
re

as
e 

vi
sc

os
ity

Time evolution of the dissipation

Increasing dispersion enhances the
difference between the evolutions 
of initial positive and negative phase
jumps. 
This effect is more important when the
viscosity is smaller. 

Regime of dispersive intermediate shocks

Regime of bright and dark solitons

Transition regime

δ= 5. 10-3

η=  10-5

detail
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After the initial rotational discontinuity has evolved towards a bright soliton
(which displays a 2π phase variation), the later dynamics is similar to that of an
initial bright DNLS soliton with non-zero boundary conditions (oblique soliton)
in the presence of a small dissipation.

This problem was studied in Sanchez-Arriaga et al., Phys. Rev. E 82, 016406 (2010) 



Effect of weak dissipation on oblique bright solitons
and breathers

Time evolution of an initial bright soliton with λ =0.975 when 
the DNLS equation with viscosity η=10−5: QUASI-COLLAPSE .

The soliton becomes a breather, collapses, reverses its
direction of propagation  while radiating, and finally 
evolves to a wave packet.

Sanchez-Arriaga et al., Phys. Rev. E 82, 016406 (2010)



Viscous DNLS Kinetic DNLS
(dissipation by Landau damping)

Reducing the 
viscosity strengthens
the amplitude growth
and the width reduction,
but also delays the process.
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Dissipation 

Mean square
gradient

µ ≡ η

dissipation

phase jump

minx|b|

t t t

t

As the viscosity is reduced, the global time
to dissipate the soliton energy increases,
but the oscillation period (which is that of the
breather) decreases.

Phase jumps (0 ↔ 2π) at the instants of reconnection
(minx|b| =0), which also correspond to inflection points 
of the dissipation (and breather amplitude).

Energy dissipated during  the 
time interval for which D(t) > Dmax/10, 
is of the order of 70% of the energy of 
the initial soliton energy, whatever the 
viscosity.



Same phenomenon when starting from a 
breather rather than from a bright soliton

Non-zero boundary conditions play 
a central role in this dynamics, as 
"oblique solitons" display a 2π phase 

variation.



Turbulent dispersive regime 
A driving term is supplemented to the viscous DNLS equation in 
the form of a  homogeneous random field that approximates a
white noise in time and acts at large scales.

Zero initial conditions.

Spontaneous formation of
solitons that undergo 
quasi-collapse .

Dynamics qualitatively similar to the "turbulent transfer of energy by radiating pulses" 
discussed by Rumpf, Newell & Zakharov (PRL 103, 07502, 2009) : 
Direct transfer associated with adiabatic evolution of  radiating freak waves whose width decreases.
Distortion of strongly nonlinear structures rather than interaction between  mostly linear modes
(weak turbulence).
The present model built from an integrable equation cannot develop weak turbulence.

Laveder et al., Phys. Lett. A 375, 3997 (2011) 



Time variation of the instantaneous global maxima : rogue wave formation

Increase diffusion
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.Reducing dispersion makes the 
dynamics less intermittent

Life time of the peaks increases 
with both diffusion and dispersion,  
ranging from a few hundredths in 
run C to about a ten in run B.

Fixed dispersion but increasing diffusion:
Amplitude of rogue structures is reduced but their frequency enhanced



Differently, in the integrable case (no dissipation nor forcing)

Probability distribution of the instantaneous 
global maxima

Power laws

Exponential decay

Rogue waves
(large-amplitude solitons)

Very large rogue waves
(collapsing solitons)

Two power laws
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Random fluctuations created by the forcing term rapidly evolve to a quasi-solitonic turbulence where 
structures of different amplitude move chaotically, interact and merge. 

(Dynamics made possible by the breaking of the integrability under the action of diffusion and driving).

Some of the formed solitons then strongly amplifiy and collapse.

Two-stage process                two different power laws in the intensity histograms.

Similarities  with the two-stage process of rogue-wave formation in water-waves (Zakharov, Dyachenko & 

Prokofiev, Eur. J. Mech. B, Fluids  25, 677, 2006).

In both physical situations, during  a relatively long period of time, quasi-solitonic turbulence consisting of 
randomly distributed quasi-solitons with various amplitudes. 

In water wave problem, collapse originates from self-focusing (a strongly nonlinear process). 

Differently, in DNLS framework, quasi-collapse is  due to a weak dissipation.

Two power laws in the non integrable regime



CONCLUSIONS

Small-amplitude Alfvén waves:

an example of a system possibly subject to strong topological constraints:
• intermediate shocks with an angular jump larger than π, 
• (oblique) solitons with non-zero boundary conditions (displaying a 2π phase variation). 

The solution has to eliminate this topological constraint through a violent event
(reconnection or quasi-collapse) in order to dissipate.

Impact on the turbulent regime (resulting from a random driving): 
Strong temporal intermittency of dissipation characterized by isolated bursts with a 
power-law probability distribution. In the presence of dispersion, huge rogue waves. 

Question: Genericity of this phenomenon, described in the context of Cohen-Kulsrud and 
derivative nonlinear Schrödinger equations? 

Instability and collapse of intermediate shocks, similar to CK have been  reproduced
in MHD with anisotropic viscosity and magnetic diffusivity (aimed to mimic Braginski-MHD).

Are there other physical contexts where a similar dynamics can occur?


