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New wave generation
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We present the results of a combined experimental and numerical study of the
generation of internal waves using the novel internal wave generator design of
Gostiaux et al. (Exp. Fluids , vol. 42, 2007, pp. 123–130). This mechanism, which
involves a tunable source composed of oscillating plates, has so far been used for a
few fundamental studies of internal waves, but its full potential is yet to be realized.
Our study reveals that this approach is capable of producing a wide variety of two-
dimensional wave fields, including plane waves, wave beams and discrete vertical
modes in finite-depth stratifications. The effects of discretization by a finite number
of plates, forcing amplitude and angle of propagation are investigated, and it is found
that the method is remarkably efficient at generating a complete wave field despite
forcing only one velocity component in a controllable manner. We furthermore find
that the nature of the radiated wave field is well predicted using Fourier transforms
of the spatial structure of the wave generator.
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1. Introduction
The study of internal waves continues to generate great interest owing to the

evolving appreciation of their role in many geophysical systems. In the ocean, internal
waves play an important role in dissipating barotropic tidal energy (see Garrett &
Kunze 2007 for a review), whereas atmospheric internal waves are an important means
of momentum transport (Alexander, Richter & Sutherland 2006). In both the ocean
and the atmosphere, internal wave activity also impacts modern-day technology
(Osborne, Burch & Scarlet 1978). However, many unanswered questions remain,
particularly regarding the fate of internal waves. For example, how much mixing do
internal waves generate in the ocean and via what processes? And at what altitudes
do atmospheric internal waves break and deposit their momentum? The ability to
reliably model internal wave dynamics is key to tackling important questions such as
these.

† Email address for correspondence: matthieu.mercier@ens-lyon.fr
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Internal waves come in a wide variety of forms. The simplest, a plane wave, is
the basis of many theoretical studies that provide fundamental insight into the topic
(for instance, see Thorpe 1987, 1998; Dauxois & Young 1999), especially as any
linear wave structure can be decomposed into independent plane waves via Fourier
transforms. While plane wave solutions are the focus of many theoretical studies,
laboratory experiments and field observations reveal that internal waves generated
by a localized source, such as the tidal flow past an ocean ridge (Bell 1975; Martin,
Rudnick & Pinkel 2006) or deep tropical convection in the atmosphere (Walterscheid,
Schubert & Brinkman 2001), produce coherent wave beams that radiate away from the
generation site. In vertically finite domains, such as the ocean, the internal wave field
can be conveniently described using vertical modes, i.e. horizontally propagating and
vertically standing waves, whose spatial form is dictated by the vertical stratification,
as discussed in Echeverri et al. (2009). Finally, localized solitary wave structures are
also ubiquitous (New & Da Silva 2002).

Investigation of these different internal wave forms in laboratory experiments has
played a key role in internal wave research, starting with the pioneering work of
Mowbray & Rarity (1967) on the wave beams generated by an oscillating cylinder.
Since then, internal waves have been generated using a variety of means. Delisi &
Orlanski (1975) performed an experimental study of the reflection of nominally plane
waves, produced by a paddle mechanism, from a density jump. A similar paddle
mechanism was used by Ivey, Winters & De Silva (2000) to study the dissipation
caused by internal wave breaking at a sloping boundary. Maas et al. (1997) used
vertical oscillations of a tank filled with salt-stratified water to parametrically excite
internal waves, which eventually focused onto internal wave attractors in the tank.
With the ocean in mind, Gostiaux & Dauxois (2007) and Echeverri et al. (2009)
produced internal waves by side-to-side oscillation of topography.

The aforementioned experimental methods of internal wave generation have three
inherent shortcomings. Firstly, they produce wave fields that are invariant in one
horizontal direction and are thus nominally two-dimensional. In this paper, we too
restrict ourselves to the study of such situations, using z to refer to the vertical
direction, anti-parallel to the gravity field g = −gez, and x to refer to the horizontal
direction; the possibility of generating three-dimensional wave fields using the novel
generator is raised at the end of the paper. The second shortcoming is that with
the exception of towed topography (Baines & Hoinka 1985; Aguilar & Sutherland
2006), pre-existing methods radiate waves in multiple directions rather than in a single
direction. This is due to the dispersion relation for internal gravity waves,

ω2 = N2 sin2 θ, (1.1)

which relates the forcing frequency, ω, to the local angle of energy propagation with
respect to the horizontal, θ , via the Brunt–Väisälä frequency, N =

√
−g∂zρ/ρ, where

ρ is the background fluid density. Since all waves propagating at angles ±θ and π ± θ

satisfy (1.1) for a given frequency ratio ω/N , a two-dimensional localized source,
such as a vertically oscillating cylinder, generates internal waves propagating in four
different directions. Propagation in two of the four directions can be suppressed either
by providing oscillations along only one of the directions of propagation (i.e. θ and
π+θ) (Gavrilov & Ermanyuk 1996; Ermanyuk & Gavrilov 2008) or by using a paddle
system at a boundary (Delisi & Orlanski 1975). These arrangements nevertheless still
produce an undesirable second set of waves that must somehow be dealt with in
an experiment. The third, and perhaps the most significant, shortcoming is that all
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Figure 1. A schematic showing the basic configuration of a novel internal wave generator.
The plates are vertically stacked on an eccentric camshaft. See § 2 for the definitions of the
different lengths W , � and λ. The circular arrow at the top of the generator illustrates the
direction of rotation of the camshaft; the thick vertical arrows show the corresponding motion
of the wave form of the plates; and the dashed oblique arrows indicate the resulting local
velocity field. Further, vφ and vg indicate the direction of the phase and group velocities,
respectively.

pre-existing methods provide very limited, if any, control of the spatial structure of
an internal wave field.

A major advance in internal wave generation recently occurred with the design of a
novel type of internal wave generator (Gostiaux et al. 2007). This design uses a series
of stacked, offset plates on a camshaft to simultaneously shape the spatial structure of
an experimental internal wave field and enforce wave propagation in a single direction,
as illustrated in figure 1. The maximum horizontal displacement of each plate is set
by the eccentricity of the corresponding cam, and the spatio-temporal evolution is
defined by the phase progression from one cam to another and the rotation speed of
the camshaft. So far, this configuration has been used to study plane wave reflection
from sloping boundaries (Gostiaux 2006), diffraction through a slit (Mercier, Garnier
& Dauxois 2008) and wave beam propagation through non-uniform stratifications
(Mathur & Peacock 2009). Despite these early successes, however, there has been no
dedicated study of the ability of this arrangement to generate qualitatively different
forms of internal wave fields, and several important questions remain. For example,
how does a stratified fluid that supports two-dimensional waves respond to controlled
forcing in only one direction (i.e. parallel to the motion of the plates)?

In this paper, we present the results of a comprehensive study of two-dimensional
wave fields produced by different configurations of novel internal wave generators and
reveal that this approach can accurately produce plane waves, wave beams and discrete
vertical modes. The results of experiments are compared with predictions based on
the Fourier transforms of the spatial structure of the wave generator, which proves to
be a very useful and simple tool for predicting wave fields, and numerical simulations,
which allow investigation of the boundary conditions imposed by the generator.
The paper is organized as follows: § 2 presents the experimental and numerical
methods used throughout the study. The generation of plane waves is addressed in
§ 3, followed by the generation of self-similar wave beams and vertical modes in § § 4
and 5, respectively. Our conclusions, and suggestions for future applications of the
generator, are presented in § 6.
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Generator Height Width Plate thickness Plate gap Maximum eccentricity Number of plates

ENS 390.0 140.0 6.0 0.7 10.0 60
MIT 534.0 300.0 6.3 0.225 35.0 82

Table 1. Details of the wave generators at ENS de Lyon and Massachusetts Institute of
Technology (MIT). Dimensions are in millimetres.

2. Methods
2.1. Experiments

Throughout this paper, we consider the case of wave fields excited by a vertically
standing generator with horizontally moving plates of thickness �, as depicted in
figure 1. This scenario, which is possible because the direction of wave propagation
is set by the dispersion relation (1.1), has two major advantages over the other
possibility of a generator tilted in the direction of wave propagation (Gostiaux et al.
2007; Mathur & Peacock 2009). First, it is far more convenient because it requires
no mechanical components to orient the camshaft axis and no change of orientation
for different propagation angles. Second, unwanted wave beams that are inevitably
produced by free corners within the body of a stratified fluid are eliminated because
the generator extends over the entire working height of the fluid.

Two different laboratory experimental facilities, both using the double-bucket
method (Oster 1965) to create salt/density stratifications, were used. The first, at

École Normale Supérieure (ENS) de Lyon, utilized a 0.8 m long, 0.170 m wide and
0.425 m deep wave tank. The wave generator, whose characteristics are listed in table 1,
was positioned at one end of the tank. On each side of the wave generator there
was a 0.015 m gap between the moving plates and the side wall of the wave tank.
Visualizations and quantitative measurements of the density-gradient perturbation
field were performed using the synthetic schlieren technique (Dalziel, Hughes &
Sutherland 2000). The correlation imaging velocimetry algorithm of Fincham &
Delerce (2000) was used to compute the cross-correlation between the real-time
and the t =0 background images. Blocksom filter matting was used to effectively
damp end-wall reflections of internal waves. The ENS Lyon set-up was used to run
experimental studies of the classical Thomas–Stevenson wave beam profile (Thomas
& Stevenson 1972), detailed in § 4.

The second system, at MIT, utilized a 5.5m long, 0.5 m wide and 0.6 m deep
wave tank. A partition divided almost the entire length of the tank into 0.35 and
0.15 m wide sections, the experiments being performed in the wider section. The wave
generator, whose characteristics are given in table 1, was mounted in the 0.35 m wide
section of the tank with a gap of 0.025 m between the moving plates and either
side wall. Parabolic end walls at the ends of the wave tank reflected the wave field
produced by the generator into the 0.15 m wide section of the tank, where it was
dissipated by Blocksom filter matting. Visualizations and quantitative measurements
of the velocity field in the vertical midplane of the generator were obtained using a
LaVision particle image velocimetry (PIV) system. This facility was used for studies
of plane waves and vertical modes, detailed in § § 3 and 5, respectively.

Examples of the amplitude and phase arrangements of the plates for the experiments
discussed in this paper are presented in figure 2. We use the following terminology:
M is the number of plates per period, used to represent a periodic wave form of
vertical wavelength λ; W is the total height of the active region of the generator with
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Figure 2. Examples of the (a) eccentricity A(z) in centimetres, (b) phase φ(z) and
(c) instantaneous position of the cams for different profiles used throughout the paper.
These include plane waves for M = 12 and W = 2λ (�), Thomas & Stevenson (1972) beam
(∗) and a mode 1 internal tide (�). The thin lines drawn through the discrete points are the
corresponding analytical forms being modelled.

non-zero forcing amplitude; A(z) is the eccentricity of a cam located at height z;
and φ(z) is the phase of a cam set by the initial rotational orientation relative to the
mid-depth cam (φ = 0). The actual profile of the generator is given by Re{A(z)eiφ(z)},
where Re stands for the real part. For a plane wave, A(z) is constant and φ(z) varies
linearly over the active region of the generator. For the Thomas & Stevenson (1972)
profile there is a non-trivial spatial variation in both A(z) and φ(z) over the active
region, and elsewhere A(z) is zero. Finally, for a mode 1 wave field, A(z) varies as the
magnitude of a cosine over the entire fluid depth, while φ(z) jumps by π at mid-depth.

2.2. Numerics

Complementary two-dimensional numerical simulations, in which excitation by the
generator was modelled by imposing spatio-temporal variations of the velocity and
buoyancy fields along one boundary of the numerical domain, were performed. The
simulations, which assumed a Newtonian fluid in the Boussinesq approximation,
solved the incompressible continuity, Navier–Stokes and energy equations:

∇ · v = 0, (2.1a)

∂tv + (∇ × v) × v = −∇q + bez + ν∇2v (2.1b)

and

∂tb + (v · ∇) b = −N2v · ez + κ∇2b, (2.1c)

where v = (u, w) is the velocity field; v is the corresponding velocity magnitude;
p = q − v2/2 is the pressure; b is the buoyancy field, related to the density by
ρ = ρ0(1 − g−1N2z − g−1b) in which ρ0 is the density at z = 0; ν is the kinematic
viscosity; and κ is the diffusivity.
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The code used was an extension of that developed for channel flow (Gilbert 1988),
to which the integration of the energy equation and the possibility of spatially varying
and time-evolving boundary conditions on the plates were added, as already presented
in Martinand, Carrière & Monkewitz (2006) for thermal convection. The method
proceeds as follows. A numerical solution in a rectangular domain [0, lx] × [0, lz]
is obtained by a tau-collocation pseudo-spectral method in space, using Fourier
modes in the z-direction and Chebyshev polynomials in the confined x-direction. This
method very precisely accounts for the dissipative terms. The nonlinear and diffusion
terms are discretized in time by Adams–Bashforth and Crank–Nicolson schemes,
respectively, resulting in second-order accuracy in time. As the simulation focuses
on the linear and weakly nonlinear dynamics, the de-aliasing of the nonlinear term
in the spatial expansion of the solution is not of crucial importance and is omitted
to decrease the computational cost. Owing to the assumption of a divergence-free
flow, the influence matrix method, introduced in Kleiser & Schumann (1980, 1984),
is used to evaluate the pressure and the velocity field, the pressure gradient in the
Navier–Stokes equation then being discretized by an implicit Euler scheme. Finally,
the buoyancy term is also discretized in time by an implicit Euler scheme, since the
energy equation is solved before the Navier–Stokes equations.

Simulations were run by imposing forced boundary conditions on components of
the velocity and buoyancy fields at x = 0; no forcing was applied to the pressure, since
its value on the boundaries is an outcome of the numerical method. The governing
equations (2.1) were thus integrated together with Dirichlet boundary conditions,

v (0, z, t) = vf (z, t) , b (0, z, t) = bf (z, t) , (2.2)

while

v (lx, z, t) = 0, b (lx, z, t) = 0 (2.3)

were applied at x = lx . We note that this numerical forcing is Eulerian in nature,
whereas the corresponding experimental forcing is Lagrangian in spirit. The spectral
method introduces periodic conditions in the z-direction, which have to be accounted
for to avoid Gibbs oscillations. Therefore, the boundary conditions (2.2) were
multiplied by a polynomial ‘hat’ function H (z) = (1 − (2z/lz − 1)30)6, vanishing at
z = 0 and z = lz. The choice of the exponents in H (z) is qualitative, the aim being that
the variation of the profile envelope is smooth compared with the spatial resolution,
yet sharp enough to keep a well-defined width of forcing.

The boundary conditions (2.3) imply wave reflection, with the reflected waves
eventually interfering with the forced waves. Thus, the numerical domain was made
sufficiently large to establish the time-periodic forced wave field near the generation
location long before reflections became an issue. For a typical simulation, the domain
was lx = 3.01 m long and lz = 1.505 m high, and the number of grid points used was
Nx = 1024 and Nz = 512, giving a spatial vertical resolution of 2.9 mm that ensured at
least two grid points per plate. Satisfactory spectral convergence was confirmed for
this spatial resolution, and the time step was set to ensure stability of the numerical
scheme.

2.3. Analysis

A detailed study of the impact of sidewall boundary conditions on the generation
of shear waves was performed by McEwan & Baines (1974). Here, we take a
simpler approach and show that a useful tool for investigating both theoretical
and experimental internal wave fields produced by the novel generator is Fourier
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analysis. This allows one to decompose internal wave fields into constituent plane
waves and readily make predictions about the radiated wave field.

For an unconfined inviscid two-dimensional system, any physical field variable
associated with a periodic internal wave field of frequency ω can be described by its
Fourier spectrum (Tabaei & Akylas 2003; Tabaei, Akylas & Lamb 2005), i.e.

ψ(x, z, t) =
e−iωt

2π

∫ +∞

−∞

∫ +∞

−∞
Q̃ψ (kx, kz)e

i(kxx+kzz) δ
((

k2
x + k2

z

)
ω2 − N2k2

x

)
dkz dkx, (2.4)

where ψ(x, z, t) represents a field variable (e.g. b, u) and the Dirac δ-function ensures
the dispersion relation (1.1) is satisfied by the plane wave components. Propagating
waves in a single direction, say towards the positive x-component and the negative
z-component for the energy propagation, require

Q̃ψ (kx, kz) = 0, ∀kx � 0 and ∀kz � 0, (2.5)

as noted by Mercier et al. (2008).
At a fixed horizontal location x0, the values of ψ(x0, z, t) for all the field variables

can be considered as boundary conditions that force the propagating wave field
ψ(x, z, t). Knowing the Fourier transform of the boundary forcing,

Qψ (x0, kz) =
eiωt

√
2π

∫ +∞

−∞
ψ(x0, z, t) e−ikzz dz, (2.6)

leads to the complete description of the radiated wave field for x > x0,

ψ(x, z, t) =
e−iωt

2π

∫ +∞

0

∫ +∞

−∞
Qψ (x0, kz) ei(kxx+kzz)δ

((
k2

x + k2
z

)
ω2 − N2k2

x

)
dkz dkx, (2.7)

assuming that only right-propagating waves (i.e. kx � 0) are possible.
In practice, the novel wave generator we consider forces only the horizontal velocity

field in a controlled manner, i.e.

ψ(0, z, t) = u(0, z, t) = Re{U (z)e−iωt}. (2.8)

As such, we expect the Fourier transform of this boundary condition to act only as
a guide for the nature of the radiated wave field, since it is not clear how the fluid
will respond to forcing of a single field variable. Throughout the paper, we perform
the Fourier transform along a specific direction using the fast Fourier transform
algorithm. To compare spectra from theoretical, numerical and experimental profiles
with the same resolution, a cubic interpolation (in space) of the experimental wave
field is used if needed.

Unless otherwise stated, the experimental and numerical results presented are
filtered in time at the forcing frequency ω. The aim is to consider harmonic (in
time) internal waves for which we can define the Fourier decomposition in (2.4) and
to improve the signal-to-noise ratio, which lies in the range 102–101, with the best
results for shallow beam angles and small-amplitude forcing. The time window �t

used for the filtering is such that ω�t/2π � 9 for A0 = 0.005 m and ω�t/2π � 4 for
A0 = 0.035 m (where A0 is the amplitude of motion of the plates defined in (3.1)),
ensuring sufficient resolution in Fourier space for selective filtering. The recording
was initiated at time t0 after the start-up of the generator such that Nt0/2π � 30 � 1,
ensuring no transients remained (Voisin 2003).
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Experiment Experiment/simulation Forcing M W/λe A0 (mm) θ (deg.)

Common case 1 Experiment/simulation Partial 12 3 5.0 15

Forcing 2 Simulation Complete 12 3 5.0 45

Angle

3 Experiment/simulation Partial 12 3 5.0 30
4 Experiment/simulation Partial 12 3 5.0 45
5 Experiment/simulation Partial 12 3 5.0 60
6 Simulation Partial 12 3 5.0 75

Width

7 Experiment/simulation Partial 12 2 5.0 15
8 Experiment/simulation Partial 12 1 5.0 15
9 Experiment/simulation Partial 12 2 5.0 45

10 Experiment/simulation Partial 12 1 5.0 45

Discretization
11 Simulation Partial ∞ 3 5.0 15
12 Experiment/simulation Partial 4 3 5.0 15

Amplitude
13 Experiment/simulation Partial 12 3 35.0 15
14 Experiment Partial 12 3 35.0 30
15 Experiment Partial 12 3 35.0 45

Table 2. Summary of experiments and numerical simulations: M is the number of plates used
for one wavelength; W/λe is the spatial extent of forcing expressed in terms of the dominant
wavelength; A0 is the eccentricity of the cams; and θ is the energy propagation angle. For
complete forcing, u, w and b were forced at the boundary.

3. Plane waves
Since many theoretical results for internal waves are obtained for plane waves

(e.g. Thorpe 1987, 1998; Dauxois & Young 1999), the ability to generate a good
approximation of a plane wave in a laboratory setting is important to enable
corresponding experimental investigations. In order to generate a nominally plane
wave, however, one must consider the impact of the different physical constraints
of the wave generator, which include the controlled forcing of only one velocity
component by the moving plates, the finite spatial extent of forcing, the discretization
of forcing by a finite number of plates, the amplitude of forcing and the direction of
wave propagation with respect to the camshaft axis of the generator. In this section,
we present the results of a systematic study of the consequences of these constraints;
a summary of the experiments is presented in table 2.

3.1. Analysis

Two-dimensional, planar internal waves take the form ψ(x, z, t) = Re{ψ0e
(ikxx+ikzz−iωt)},

where k = (kx, kz) is the wave vector and ψ(x, z, t) represents a field variable. Being
of infinite extent is an idealization that is never realizable in an experiment. To
investigate the consequences of an internal wave generator being of finite extent,
the horizontal velocity boundary conditions used to produce a downward right-
propagating nominally plane wave can be written as

u(0, z, t) = Re{[Θ(z + W/2) − Θ(z − W/2)] A0ω ei(−ωt+kez)}, (3.1)

where ke > 0 is the desired vertical wavenumber, λe =2π/ke the corresponding vertical
wavelength, −W/2 � z � W/2 the vertical domain over which forcing is applied,
A0 the amplitude of motion of the plates and Θ the Heaviside function. The spatial
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Fourier transform of (3.1) is

Qu(0, kz) = A0ω
W√
2π

sinc

(
(kz − ke)W

2

)
, (3.2)

with sinc(x) = sin x/x the sine cardinal function. In the limit W → ∞, (3.2) approaches
a δ-function, which is the Fourier transform of a plane wave. Owing to the finite value
of W , however, Qu(0, kz) does not vanish for negative values of kz, suggesting that
(3.1) will also excite upward-propagating plane waves. Following the convention usual
in optics that Qu(0, kz) is negligible for |kz − ke|W/2 � π, if ke � 2π/W , then (2.5) is
reasonably satisfied.

Another consideration is that the forcing provided by the wave generator is not
spatially continuous but discretized by Np oscillating plates of width �. Accounting
for this, the boundary forcing can be written as

u(0, z, t) = Re

⎧⎨
⎩

Np−1∑
j=0

[
Θ(z − zj ) − Θ(z − zj + �)

]
A(zj ) ei(kezj +ke�/2−ωt)

⎫⎬
⎭ , (3.3)

where zj = j� − W/2 and Np� = W . The Fourier transform of (3.3) for the specific
case of constant amplitudes, A(zj ) = A0ω, ∀j ∈ {0, . . . , Np − 1}, reduces to

Qu(0, kz) = A0ω
�√
2π

sinc

(
kz�

2

) sin

(
(kz − ke)W

2

)

sin

(
(kz − ke)�

2

) , (3.4)

a classical result often encountered for diffraction gratings. Consequently, the
magnitudes of W and � in comparison with the desired vertical wavelength λe = 2π/ke

characterize the spread of the Fourier spectrum and the potential for excitation of
upward-propagating waves.

In the following sections, we quantify the downward emission of waves using the
parameter βd , defined as

βd =

∫ +∞

0

|Qu(x0, kz)|2 dkz∫ +∞

−∞
|Qu(x0, kz)|2 dkz

, (3.5)

which is essentially the ratio of the total kinetic energy of the downward-propagating
waves to the total kinetic energy of the radiated wave field.

3.2. Configuration

The MIT facility was used for these plane wave experiments (see table 1). A variety
of different configurations were tested, which are summarized in table 2. The fluid
depth was H = 0.56 ± 0.015 m, and the background stratification was N = 0.85 rad s−1

for all experiments. An example configuration of the cams (amplitude and phase
evolution) is presented in figure 2. Plane waves were produced by configuring Np

plates of the wave generator with an oscillation amplitude A0 = 0.005 m, with the
exception of experiments 13–15 for which A0 = 0.035 m. Results were obtained for
different forcing frequencies corresponding to propagating angles of 15◦, 30◦, 45◦

and 60◦. Visualization of the wave field was performed using PIV, for which it
was possible to observe the wave field in a 40 cm wide horizontal domain over the
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Figure 3. Comparison of the numerically obtained horizontal velocity field u for plane wave
beams forced by (a) complete and (b) partial forcing (experiments 2 and 4 in table 2).
(c) Horizontal velocity along the cut C in (a) and (b), located at xC = 0.05 m for complete
(——) and partial (– – –) forcing. All lengths are in metres and all velocities in metres per second.

entire depth of the tank, save for a 1 cm loss near the top and bottom boundaries
due to unavoidable laser reflections. The corresponding numerical simulations were
configured accordingly.

3.3. Results

3.3.1. Forcing

The consequences of forcing only a single component of the velocity field, which we
call partial forcing, in comparison with forcing both the velocity field components and
the buoyancy field (assuming they are related by the inviscid linear wave equation),
which we call complete forcing, were investigated first using the numerical simulations.
Here, we present the results of simulations performed using a sinusoidal boundary
wave form with W = 3λe, M =12 and λe = 78.8 mm (experiments 2 and 4 of table 2).
The magnitude and frequency of the boundary condition for horizontal velocity were
A0 = 5.0 mm and ω = 0.601 rad s−1, the latter giving θ = 45◦.

Figures 3(a) and 3(b) present snapshots of the horizontal velocity fields u produced
by partial and complete boundary forcing, respectively, and there is excellent
qualitative agreement between the two. More quantitative comparisons are provided
in figure 3(c), which presents data along the vertical cuts C indicated in figures 3(a)
and 3(b), located at xC =0.05 m; this location was chosen because it is close enough
to the generator such that viscous damping has only an order 1 % effect on the
wave field (based on the linear viscous theory for plane waves of Lighthill 1978),
yet is sufficiently far from the generator to allow the wave field to adapt to the
boundary forcing. The cross-beam profiles in figure 3(c) show that the amplitude
of u is roughly 20 % lower for the case of partial forcing compared with complete
forcing, but otherwise their forms closely match. Spectral information reveals no other
discernible difference between the two, and both cases give βd > 0.99, compared with
the theoretical prediction of βd =0.97, revealing that almost all the energy is being
emitted downward. Results qualitatively and quantitatively similar to those presented
in figures 3(a) and 3(b) were obtained for different physical quantities (e.g. w and b)
of the wave fields and for the other configurations of the generator listed in table 2.
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3.3.2. Angle of emission

As one might expect, the quality of the wave field is best for shallower propagation
angles, for which the horizontal velocity is a more defining quantity, and is degraded
for steep propagation angles, where w becomes the dominant velocity component.
This is demonstrated in a qualitative manner by figures 4(a)–4(d ), which present
snapshots of the experimental horizontal velocity fields for θ = 15◦, 30◦, 45◦ and 60◦,
corresponding to experiments 1, 3, 4 and 5 in table 2, respectively. Although the
forcing velocity u =A0ω is strongest for θ = 60◦, the wave field resulting from this
partial forcing is not as strong and coherent as those at lesser angles.

Another demonstration of the consequences of partial forcing is given in figure 5,
which presents the efficiency of the wave generator as a function of the forcing
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frequency for experiments and numerics. The efficiency is defined as the magnitude
of the horizontal velocity component u (figure 5a) or the velocity in the direction
of wave propagation u′ (figure 5b), averaged over the central 0.1 m of the cut
C across the wave field, compared with the forced horizontal velocity A0ω. For
complete forcing, one expects the ratio u/A0ω to be equal to 1, whereas a smaller
value indicates a less efficient mechanism. The results show that both u/A0ω and
u′/A0ω decrease with increasing ω/N . A simple physical argument for the decay
of the response with the propagation angle could be that the generator provides
an initial amount of kinetic energy that is redistributed by the flow into both
horizontal and vertical motions. If all the energy is appropriately distributed, we

expect u′ = A0ω, and thus u =A0ω cos θ =A0ω
√

1 − (ω/N )2, represented by the solid
lines in both figures 5(a) and 5(b). Below (ω/N)2 = 0.5 the experiments and numerics
follow this trend quite closely, but then depart from it significantly for higher frequency
ratios. Also plotted as the dashed lines in figure 5 is the relation u′ = A0ω cos θ ,

implying u′/A0ω =
√

1 − ω2/N2 and u/A0ω = 1 − ω2/N2, which does a reasonable job
of capturing the trend of the results, especially at higher frequency ratios. This relation
implies that the energy associated with the motion of the plates along the direction
of propagation is primarily responsible for setting the strength of the wave field.

Finally, we analyse the evolution of the wave field with increasing angle by
computing βd . For these experiments, the Fourier analysis in § 3.1 predicts βd = 0.97,
independent of the angle of emission. Although the numerical values concur with
this prediction, with βd > 0.99 for all angles, we obtain values of 0.99 for θ = 15◦,
0.98 for θ = 30◦ and 45◦ and 0.93 for θ = 60◦ for the experiments. One possible
reason for this decrease in efficiency is the finite-amplitude lateral displacement of the
plates of the generator, which could partially block the propagation of steeper waves;
this is not taken into account in the numerics. Another possible reason is that at
higher frequency of forcing the Reynolds number for the oscillating plates is larger,
increasing the likelihood of more complex dynamics near the oscillating plates and
thereby weakening their coupling with wave generation. These issues are raised again
in § 3.3.5.

Overall, the results in this section and the previous section reveal that partial
(horizontal) forcing by a vertically standing generator works well for θ � 45◦. This
gives the user the freedom to perform experiments over a range of angles without
having to reorient the generator. For larger angles, however, it would seem prudent to
use a generator with its perpendicular axis tilted towards the direction of propagation.
This was confirmed by a series of experiments similar to cases 1 and 3–5 in table 2,
but with the generator tilted at 15◦ to the vertical; these results are also included in
figure 5. For angles smaller than 45◦, there is almost no difference in the efficiency of
the generator, but we found that the 60◦ wave field produced by the tilted generator
was noticeably stronger and more coherent than that produced by the vertically
standing generator.

3.3.3. Finite extent

The Fourier analysis in § 3.1 predicts that a consequence of a generator inevitably
being of finite vertical extent is the production of undesirable waves that propagate
in the vertical direction opposite to the principal wave field. This can be seen in both
the numerical and experimental wave fields in figures 3 and 4, which contain a weak,
upward-propagating wave field in addition to the principal downward-propagating
wave field. Experiments were therefore performed for W/λe = 1, 2 and 3 to investigate
how the strength of the undesirable wave field was influenced by the vertical restriction
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Figure 6. Horizontal velocity fields for (a) experiment and (b) simulation for experiment 1 in
table 2. (c) Vertical profiles along the cut C located at xC = 0.05m for the experiment (– – –)
and the simulation (——). All lengths are in metres and all velocities in metres per second.

of the forcing and to determine how well this was predicted by simple Fourier analysis.
Except for varying W/λe and having θ =15◦, the configuration was the same as in the
previous subsection. The experiments are listed as experiments 1, 7 and 8 in table 2.

A direct comparison of experimental and numerical horizontal velocity fields for
W/λe = 3 is presented in figure 6, which demonstrates very good agreement between
the two, providing confirmation that our numerical approach can reliably model
the horizontal forcing provided by the plates. The profiles presented in figure 6(c),
obtained at the vertical cuts indicated in figures 6(a) and 6(b), have only one small,
but noticeable, difference: slightly higher peaks at either end of the experimental
velocity profile. A similar level of agreement was obtained for the vertical velocity
profile.

The normalized experimental spatial Fourier spectra Qu (xC, kz) at xC = 0.05 m and
the normalized theoretical spectra Qu (0, kz) are presented in figure 7. A standout
feature of the results is that the theoretical Fourier transform does a remarkably
good job of predicting the spectrum of the experimental wave field. For W/λe = 1, the
spectrum is broadly centred around the expected vertical wavenumber ke = 79.9 m−1,
and this principal peak becomes increasingly sharp for W/λe =2 and 3. This evolution
is quantified by the half-width δk, defined as the width of the principal spectral peak
at half the peak amplitude, the values of which are listed in table 3 for the three
different configurations.

Another notable feature of the spectra is that the strength of the upward-
propagating wave field (kz < 0) significantly decreases with increasing W/λe.
Computing the parameter βd for experimental and numerical cases 1, 7 and 8 of
table 2 quantifies this trend. As seen in table 3, 98 % of the energy propagates in the
desired direction for W/λe � 2. Furthermore, we computed δk/ke and βd for cases 4,
9 and 10 of table 2, and the results presented in table 3 show that the influence of
the width is more significant than the influence of the angle of emission.
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boundary x = 0, for W = λe (top), W = 2λe (middle) and W =3λe (bottom).

3.3.4. Discretization

To study the impact of spatially discretized, rather than continuous, forcing,
experiments were performed for W/λe = 3 with M =4 and M = 12, these being
experiments 12 and 1 respectively in table 2. For comparison, corresponding numerical
simulations were also performed for these two configurations, as well as for the
idealized case M → ∞, which is listed as experiment 11 in table 2 and corresponds to
forcing discretized on the scale of the grid resolution in the numerical simulations.

Snapshots of the experimental and numerical wave fields for M = 4 are presented
in figures 8(a) and 8(b), respectively, while figure 8(c) presents vertical cuts of the
horizontal velocity field at xC = 0.05m for these two data sets. Even for this coarse
discretization, there is still a remarkably smooth and periodic wave field that looks
little different from that obtained using M =12 (see figure 6). And once again there
is good agreement between experiment and numerics, with the slight exception of the
outer edges of the profile where the numerical peaks are of a little larger amplitude.

Although the cross-section of the emitted downward-propagating, nominally plane
wave looks reasonable, the discretization induces more of an undesired upward-
propagating wave, which can clearly be seen in figures 8(a) and 8(b). Fourier spectra
for experiments, numerics and theory corresponding to M = 4, 12 and ∞ are presented
in figure 9, and as predicted by (3.4), the strength of the negative wavenumbers
noticeably increases with decreasing M . Most notably, for M =4 (corresponding to
� = 19.6 mm) the discretization introduces a peak around kz = −235 (±4) m−1, which
is strongest in the theoretical spectrum but nevertheless evident in the experimental
and numerical spectra. By analogy with the theory of optical gratings, this value is in
good agreement with the canonical formula 2π/λe − 2π/� = −241 m−1, which can also
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δk/ke (15◦) βd (15◦) δk/ke (45◦) βd (45◦)

W/λe Numerics Experiments Theory Numerics Experiments Theory Numerics Experiments Theory Numerics Experiments Theory

1 1.67 1.11 1.21 0.97 0.94 0.94 1.31 1.08 1.21 0.97 0.92 0.94
2 0.58 0.57 0.60 0.99 0.97 0.96 0.61 0.58 0.60 0.99 0.96 0.96
3 0.37 0.39 0.40 0.99 0.99 0.97 0.40 0.39 0.40 0.99 0.98 0.97

Table 3. Relative half-width δk/ke and relative energy of the downward-propagating wave βd for cases 1, 7 and 8 of table 2, corresponding to a
propagation angle of 15◦, and experiments 4, 9 and 10 for a propagation angle of 45◦.
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Figure 9. Comparison between spatial spectra Qu (x, kz) computed from the experiments (�)
and numerical simulations (–·–·–·–) at station xC = 0.05 m and the theoretical expression (——)
computed from (3.4) on the boundary x = 0, for M =4 (top), M = 12 (middle) and M = ∞
(bottom).

be inferred from (3.4) when � 
 λe. For all three cases the principal peak remains
sharp, with δk/ke = 0.42. The value of βd is 0.96 when M = 4, so a vast majority of
the energy is still in the downward-propagating wave field.
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Figure 10. Vertically averaged temporal Fourier spectra of horizontal velocity normalized
by their maximum amplitude. The data were obtained from cuts at xC = 0.075 m for
(a) A0 = 0.005 m and (b) A0 = 0.035 m, for experiments (– – –) and numerics (——).

3.3.5. Amplitude

All the results presented thus far have been for A0 = 5.0 mm. To investigate the
impact of a significantly larger amplitude of forcing on the quality of the radiated wave
field, we performed a series of experiments with the same parameters as experiments 1,
3 and 4, with the exception of A0 = 35.0mm; they are listed as experiments 13–15 in
table 2.

We found that the qualitative level of agreement between experiment and numerics
for snapshots of the wave field was comparable to that presented in figures 6(a) and
6(b). When a more quantitative comparison is made, however, some consequences of
the higher-amplitude forcing become apparent. For example, for vertical cuts located
at xC = 0.075 m the amplitude of the horizontal velocity component in the experiments
was 4.4 ± 0.9 mm s−1, compared with 5.50 ± 0.25 mm s−1 in the numerical simulations.
We also note that although the forcing amplitude was increased by a factor of 7,
in the experiments the wave amplitudes only increased by a factor of around 5.
We must indicate that we had to make these, and later, comparisons, for a vertical
cross-section further away from the generator than in our previous studies because
the much larger-amplitude motion of the plates created a more intense wave field
very close to the generator, where it was not possible to get reliable experimental
data.

Figure 10 presents vertically averaged temporal spectra of the horizontal velocity for
the cuts at xC = 0.075 m, for both small- and large-amplitude forcing. The numerical
data, being at somewhat higher temporal resolution, have a lower noise level than
the experimental data. Both experimental and numerical spectra display the same
qualitative change; the large-amplitude forcing introduces more significant higher-
harmonic content into the wave field.

The normalized spatial spectra of the wave field for frequencies corresponding
to θ = 15◦, 30◦ and 45◦ are presented for both small- and large-amplitude forcing
in figure 11. The angle of emission does not seem to significantly impact the
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quality of the wave field for the small-amplitude forcing, but this is not so for
the larger-amplitude forcing, for which we find that βd decreases from 0.97 to 0.94 for
θ =15◦ and 30◦, respectively (although δk/ke = 0.38 remains constant). For θ = 45◦

and A0 = 35.0mm, the generator no longer generates a clean plane wave, the main
peak being centred around 41.5 m−1 and βd = 0.80. The cause of this breakdown is
not easy to discern. One hypothesis is that breakdown occurs at criticality, when
the angle of wave propagation exceeds the maximum slope angle of the face of the
generator, θm = (π/2) − arctan (2πA0/λe). The reason is not as simple as this, however,
since θm = 20◦ for the experiments with A0 = 35.0 mm, and yet the generator is still
an efficient source of plane waves for θ = 30◦. Other factors such as the nonlinear
coupling between the plates and the wave field, as characterized by the Reynolds
number of the plate motion, would also seem to play a role.

3.4. Summary

Through a systematic series of experiments, listed in table 2, we can draw several
conclusions about the ability of the novel wave generator to generate plane waves.
We find that the spatial Fourier transform of the profile of the wave generator
can reasonably predict a priori the spectrum of the radiated wave field. If more
comprehensive resources are available, a numerical simulation with boundary forcing
applied at x =0 can reliably reproduce the emitted wave field for small-amplitude
forcing. As one might expect, the spectrum of the wave field becomes increasingly
sharp about the dominant wavelength and thus more akin to a plane wave, as the
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number of wavelengths excited increases, and even a very crude spatial discretization
of the desired wave form produces a remarkably smooth and coherent wave field. For
large-amplitude forcing, the main impact is an increase of the harmonic content of the
wave field. Overall, we conclude that a vertically standing wave generator produces a
radiated wave field of high quality provided θ � 45◦.

4. Wave beams
Wave beams are a common feature of internal wave fields in both laboratory

experiments (Peacock & Tabei 2005; Gostiaux & Dauxois 2007) and geophysical
settings (Lam, Maas & Gerkema 2004; Martin et al. 2006), since they are readily
generated by periodic flow relative to an obstacle, be it a cylinder or an ocean ridge, for
example. We choose to investigate the so-called Thomas–Stevenson profile (Thomas
& Stevenson 1972), a viscous self-similar solution of (2.1) that can be considered
as the far-field limit of the viscous solution of an elliptic cylinder oscillating in a
stratified fluid (Hurley & Keady 1997). It has been shown that this profile describes
oceanographically relevant internal wave beams far from their generation site at the
continental shelf (Gostiaux & Dauxois 2007); after their reflection at the bottom of
the ocean, such wave beams are thought to be the cause of solitons generated at the
thermocline (for instance, see Gerkema 2001; New & Da Silva 2002).

4.1. Analysis

Consider a downward-propagating, right-going beam at angle θ ∈ [0, π/2] with
respect to the horizontal, here θ being defined to be positive in a clockwise sense.
Let ξ = x cos θ − z sin θ + l and η = x sin θ + z cos θ be the coordinates parallel and
transverse to the wave beam, respectively, with l corresponding to the distance from
the point source to the origin of the Cartesian frame at the centre of the active region
of the generator. At leading order, the parallel and transverse velocity components
and buoyancy fields of the Thomas–Stevenson profile are

u′ (ξ, η, t) = u0

(
ξN2 sin θ

g

)−2/3

Re

{∫ ∞

0

k exp(−k3) exp

(
ikα

η

ξ 1/3
− iωt

)
dk

}
,

(4.1a)

v′ (ξ, η, t) = u0

(
ξN2 sin θ

g
ξα3/2

)−2/3

Re

{
−i

∫ ∞

0

k3 exp(−k3) exp

(
ikα

η

ξ 1/3
− iωt

)
dk

}

(4.1b)

and

b (ξ, η, t) = Nu0

(
ξN2 sin θ

g

)−2/3

Re

{
−i

∫ ∞

0

k exp(−k3) exp

(
ikα

η

ξ 1/3
− iωt

)
dk

}
,

(4.1c)

where u0 is the amplitude of the horizontal velocity and α = (2N cos θ/ν)1/3.
In principle, to most accurately reproduce (4.1) one should tilt the generator

and configure the profile of the forcing plates to match the transverse profile of the
Thomas–Stevenson beam. As stated earlier, however, we consider a vertically standing
wave generator, since one will typically want to investigate several wave beam angles
in an experiment, and reconfiguring the system for each angle is impractical. Thus we
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Figure 12. Buoyancy field b(x, z, t) for a 14◦ Thomas–Stevenson beam. The lines are
the transverse cuts used in figure 13 to compare with the model. (a) Experimental and
(b) numerical buoyancy fields are in radians per second squared.

seek to reproduce the profile (4.1) by using only the longitudinal velocity profile (4.1a),
instead of the true horizontal velocity profile, to prescribe the forcing at x = 0, i.e.

u (0, z, t) = u′ (l, z, t) . (4.2)

This is an approximation of the exact solution, which will become increasingly valid
with decreasing θ . For a given viscosity, stratification and forcing frequency that
determine α, (4.2) sets effective values for the parameters � and u0 in (4.1).

4.2. Configuration

The experiments were performed using the ENS Lyon generator (see table 1) with a
background stratification N =0.82 rad s−1 and forcing frequencies ω = 0.20, 0.44 and
0.58 rad s−1, corresponding to propagation angles of 14◦, 32◦ and 44◦ respectively. The
arrangement used 21 plates to discretize the profile at x = 0, 13 of which covered the
9 cm active region. On the basis of the results of § 3.3.4, this level of discretization is
expected to be sufficient to resolve the structure of the wave beam. The configuration
of the cams (amplitude and evolution of the phase) is depicted in figure 2, with the
maximum amplitude of oscillation being 10 mm.

Experimental visualizations were performed using the synthetic schlieren method,
which gives direct measurements of the gradient of the buoyancy field. For the follow-
ing study, we integrate these data and compare the measured buoyancy field with the
analytical model (4.1c) and numerical results. For these simulations, the numerical do-
main was 0.80 m long and 0.60–1.01 m high, with a vertical resolution �z = 0.79mm.
The forcing on the boundary was discretized on the scale of the numerical grid.

4.3. Results

A direct comparison between experimental and numerical buoyancy fields for θ = 14◦

is presented in figure 12. There is close qualitative agreement between the two, and it is
notable that there is no visible sign of any upward-propagating beam coming from the
generator, owing to the highly resolved, smooth boundary conditions that were used.
For a vertical cut at xC = 0.05 m of the vertical component of the density gradient, ∂zb,
we find that βd = 0.98 for the experiments and βd = 0.99 for the numerics. We note
that the maximum values of ∂zb are around 2 % of the background stratification, and
so the wave field can reasonably be considered linear. Analysis of temporal spectra
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confirmed that harmonics were at least one order of magnitude smaller than the
fundamental signal.

For a more quantitative comparison with the self-similar solution of Thomas–
Stevenson, we investigate the buoyancy field extracted along the cuts indicated in
figures 12(a) and 12(b). Specifically, we consider the normalized transverse profiles:

b(η/ξ 1/3)

bm(ξ )
=

∫ ∞

0

k exp
(
−k3 + ikαη/ξ 1/3

)
dk

∫ ∞

0

k exp(−k3) dk

, (4.3)

where

bm(ξ ) = max
η

b (ξ, η, 0) = Nu0

(
ξN2 sin θ

g

)−2/3 ∫ ∞

0

k exp(−k3) dk (4.4)

is the maximum amplitude of the buoyancy perturbation (4.1c) along a transverse cut,
which lies at the centre of the beam (η =0). The results are presented in figures 13(a)
and 13(b), where it can be seen that both the experimental and numerical results
evolved spatially in a self-similar manner, with only small differences compared with
the analytical model.

We also confirmed the ability of the generator to produce waves beams for some
steeper angles, by performing experiments for θ = 32◦ and 44◦. Comparisons with the
analytical solution revealed the same level of agreement as for the θ = 14◦ wave beam.
The wave generator still emitted a beam in only one direction, and the experimental
values of βd were 0.99(8) for θ = 32◦ and 0.99(8) for θ = 44◦, with no discernible
change in the value of βd for the numerical simulations.

4.4. Summary

On the basis of this study, we conclude that the novel wave generator is capable of
producing a wave beam structure of a desired form, which demands excitation of
a prescribed Fourier spectrum. We have demonstrated this for the example of the
Thomas–Stevenson profile and speculate that although it is not necessary, perhaps
even closer agreement with theory can be obtained using a tilted generator.
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5. Vertical modes
Vertical internal wave modes play an important role in our current understanding of

internal tides in the ocean (Garrett & Kunze 2007). To date, however, there has been
little progress in producing high-quality vertical modes in laboratory experiments.
Thorpe (1968) generated a mode 1 disturbance by oscillating a flap hinged about
a horizontal axis at mid-depth, and Nicolaou, Liu & Stevenson (1993) produced
low modes in an essentially two-layer system with a thermocline, but neither of
these approaches can readily produce arbitrary modes in an arbitrary stratification.
Generalized forcing of a spectrum of vertical modes was obtained by Echeverri
et al. (2009), who used an oscillating Gaussian topography to generate an internal
wave field and developed a robust algorithm for extracting modal amplitudes from
experimental data. Here, we demonstrate the ability of the novel wave generator to
reliably produce arbitrary internal wave modes.

5.1. Analysis

For a stratified fluid of constant N , the horizontal velocity field associated with the
nth vertical mode of frequency ω propagating from left to right is

un(x, z, t) = Re

[
u0 cos

(
nπz

H

)
exp

(
i

nπ

H cot θ
x − iωt

)]
, (5.1)

where u0 is a complex amplitude that sets both magnitude and phase; n is a positive
integer; z = 0 and z = H are the bottom and top boundaries, respectively; and θ is
the first-quadrant angle that satisfies the dispersion relation (1.1). Note that θ does
not specify the direction of energy propagation for a vertical mode and plays a part
only in setting the horizontal wavenumber (Gill 1982).

The idealized boundary forcing of the horizontal velocity at x = 0 to excite the nth
vertical mode is

u(0, z, t) = a cos

(
nπz

H

)
cos(ωt), (5.2)

where a is an arbitrary amplitude. To analyse the quality of the wave field generated by
this forcing, instead of Fourier transforms one uses modal analysis, which is equivalent
to Fourier series in a constant stratification. The horizontal velocity component of
the resulting wave field can be written as

u(x, z, t) =

n=∞∑
n=1

an cos

(
nπz

H

)
cos

(
nπx

H cot θ
− ωt + φn

)
, (5.3)

where an and φn are the strength and the phase of the nth mode respectively. Similar
results exist for other physical variables, including vertical velocity and buoyancy
fields.

From a practical point of view, one decomposes the experimentally generated wave
field at a fixed x-location into the vertical basis modes using the numerical algorithm
described and implemented in Echeverri et al. (2009). The modal decomposition is
then performed at several other x-locations, and the variations in an and φn across
various x-locations give an estimate of the experimental errors in the results. One
can reliably correct for viscous dissipation of the modes, if need be, by introducing
in (5.3) a multiplicative term of the type e−fnx , with

fn =
νn3

2ω

(
π

H

)2 [
N2

N2 − ω2

]2

(5.4)
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being the spatial damping rate (Thorpe 1968; Echeverri et al. 2009). In our
experiments, fn is very small (roughly 10−4 m−1 for mode 1 and 10−3 m−1 for mode
2), and hence viscous dissipation can be neglected.

The discretization results for plane waves in § 3.3.4 suggest that there could be
limitations on the ability to resolve a vertical mode owing to the discretization of
the wave generator. By computing the modal decomposition of the discrete plate
arrangement, we find that provided at least 3n equispaced plates are used to represent
the nth mode, more than 95 % of the boundary forcing is contained in the nth mode.
Ensuring good quality of the generated wave field also requires one to account for
the approximation that the boundary forcing of horizontal velocity occurs at a fixed
x-location even though the plates are actually moving. For this approximation to hold,
the ratio of the maximum amplitude of oscillations of the plates to the horizontal
wavelength corresponding to the nth mode should be much smaller than unity, i.e.
nA0/(2H cot θ ) 
 1. Provided these two conditions are satisfied, a high-quality wave
field is to be expected.

5.2. Configuration

The MIT facility was used for the experiments with Np =64 of the total 82 plates (see
table 1). Individual vertical modes were produced by configuring Np plates of the wave
generator to reproduce (5.2). The amplitude of oscillation of the j th plate centred at
vertical position zj = j�/2 of mode n was A(zj ) = A0 cos(nπzj/H ), with � being the
plate thickness (see figure 2 for more details of the configuration). Experiments were
performed for modes 1 and 2. The spatial resolution of the forcing, relative to the
vertical wavelength of the mode being forced, was 1/64 in both experiments. The fluid
depth was H = 0.416 m; the maximum amplitude of oscillation was A0 = 2.5 mm; and
the stratification was N � 0.85 rad s−1. Visualization of the wave field was performed
using the PIV technique. Using this arrangement it was possible to observe the wave
field in a horizontal domain 45 cm wide and covering the full depth of the tank. No
corresponding numerical simulations were performed in this case.

5.3. Results

We present detailed results for mode 1 and mode 2 wave fields with θ = 45◦, for which
the horizontal wavelengths excited were kx = 7.55 m−1 and kx = 15.1 m−1, respectively.
Snapshots of the wave fields obtained in the vicinity of the generator are presented
in figure 14. One can clearly see the characteristic structure of a single vortex that
covers the entire vertical domain for mode 1 (figure 14a), whereas for mode 2 the
structure comprises stacked pairs of counter-rotating vortices (figure 14b).

Modal decomposition of the experimental wave fields was performed at 81 x-
locations in the regions bounded by the vertical dashed lines in figures 14(a) and
14(b), and the results are presented in figure 15. Since the maximum values of both u

and w were the same for these θ =45◦ wave fields, reliable values of an and φn were
obtained from both components of the velocity field. The two wave fields were clearly
dominated by their mode number, with by far the largest detectable amplitude being
for modes 1 and 2 in the two respective experiments and with very little variability
across the experimental domain, emphasizing the weak impact of viscosity in these
experiments. We also observed very little variability in the phase of the dominant
mode across the visualization window, implying that the wave fields were highly
spatially coherent. Since energy flux scales as a2

n/n (Echeverri et al. 2009) over 98.8 %
of the energy was in the desired mode in each experiment. The efficiency of conversion,
defined as an/Aω, was 0.89 and 0.78 for the two experiments. The insets in figure 15
present the vertically averaged temporal Fourier spectrum of u. These are dominated
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Figure 14. Snapshots of experimental velocity fields for (a) mode 1 and (b) mode 2. The
location of the wave generator is x =0, and the vertical dashed lines bound the domain over
which modal decomposition is performed. The x and z coordinates are in metres, and the
greyscale is the velocity magnitude in metres per second. The arrows indicate local velocity
direction.
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Figure 15. Modal decompositions of the wave fields presented in (a) figure 14(a) and
(b) figure 14(b). The error bars are the standard deviation of modal amplitude for the 81
vertical cross-sections studied between the dashed lines in figure 14. The insets show the
vertically averaged absolute value of the temporal Fourier spectra of u at (a) x = 10 cm and
(b) x = 5 cm.

by the fundamental frequency, demonstrating that very little higher-harmonic content
was generated by nonlinearity.

5.4. Summary

Overall, these experiments reveal that the novel wave generator is capable of producing
very high-quality radiating vertical modes in a linear stratification. For smaller angles
(i.e. lower frequencies), θ = 15◦ for example, we found that the wave field took longer
horizontal distances to evolve into established modal solutions, presumably because
of the longer horizontal wavelengths of the modes. For higher frequencies, θ =60◦ for
example, we observed high-quality modal solutions within our visualization window,
but with a small variation in the dominant modal strength for mode 2, possibly due
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to nonlinear effects. For higher angles, therefore, it would seem prudent to decrease
the maximum amplitude of oscillations and/or reduce the stratification N (allowing
for lower forcing frequency) in an effort to produce as clean a wave field as possible.
In principle, this approach can be extended to experiments with nonlinear density
stratifications, provided the stratification is known a priori so that the generator can
be configured for the appropriate vertical structure of the horizontal velocity field.

6. Conclusions
Through combined experimental, numerical and theoretical studies we have

demonstrated that the novel type of internal wave generator, comprising a series
of stacked, offset plates, can reliably shape the spatial structure of an experimental
internal wave field and enforce wave propagation. This approach is similar in spirit
to multiple-paddle techniques that have been developed for generating surface waves
(see Naito 2006, for instance). We have demonstrated the ability of the generator to
produce three qualitatively different types of wave field: plane waves, wave beams
and vertical modes. This new technology therefore provides a very useful tool to study
all manner of internal wave scenarios in the laboratory, in order to gain insight into
geophysically important problems. Furthermore, our studies reveal that the Fourier
transform of the spatial profile of the wave generator provides a reasonably accurate
prediction of the form of the emitted wave field, making it a useful tool when designing
experiments.

There are numerous examples of where this newfound capability can now be
utilized. For example, observations at several locations, in particular in the Bay of
Biscay (New & Pingree 1990; New & Da Silva 2002), have determined that an internal
tidal beam striking the thermocline is responsible for the generation of solitons. A
full understanding of the generation mechanism is yet to be achieved, however, and
laboratory experiments using the Thomas–Stevenson beam profile impinging on a
thermocline could provide significant insight into the topic. Indeed, the interaction of
wave beams with nonlinear features in the density stratification is of widespread
interest (Mathur & Peacock 2009), since it is also relevant to how and where
atmospheric internal waves break and deposit their momentum (Nault & Sutherland
2007). In regard to ocean mixing problems, an open issue is to determine the fate of
the internal tide which, among other things, can be scattered by topography (Ray &
Mitchum 1997; Johnston & Merrifield 2003). The ability to directly generate vertical
modes provides a new capability to study these important processes in controlled
settings. Other interesting avenues for research are the generation of shear waves
(McEwan & Baines 1974) and extensions to three-dimensional wave fields, which
could be achieved by introducing some horizontal spatial structure (in the y-direction)
to the leading edge of the moving plates.
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