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Barotropic compressible NS (n > 1), global results

Theory of global weak solutions for p = p7, ~ large enough. Here we
should distinguish between stationary and non-stationary problems.
- Kazhikhov, Weigant (1995): global existence, smoothness (n = 2).

- P-L. Lions (1993, 1998, 1999): global weak solvability of basic
boundary value problems (p = p7, v > 3): communicative relations
for effective viscous flux

p-(p—vdivu) =p- (p — vdivu).

- Further progress: Feireisl, Matusu-Necasova, Petzeltova, Straskraba,
Novotny (1998, 1999, 2001): v \,3/2, ...

- Feireisl (2004-2007): lim via Ma, Fr ...; analysis near the boundary;
heat-conductive models.

- P.L.Lions (1998), Feireisl (2004, 2009), Novotny, Straskraba (2004):
review of compressible NS.

Now the threshold value is v = 3/2.



Barotropic compressible NS (n > 1), global results

Stationary problems:

- P.L.Lions (1993-1999), Feireisl (2004), Novo, Novotny, Straskraba
(2002-2006), Plotnikov, Sokolowski (2004-2012), Frehse, Goj,
Steinhauer (2005), Jessle, Novotny (2013), Plotnikov, Weigant
(2015): global existence.

Now the threshold value is v = 1.
Open problems: regularity, uniqueness, ...



Mathematical model of multifluids

Models consists in continuity equation for each constituent

0, i=1,...,N,
momentum equation for each constituent

I(piu; . ) ‘
%erlV(Piui@ui)Jerifdei:pifi+Jz.,Z:1’”"N’

and the energy equations.

Here p; are the densities, u; are the velocities p; are the pressures, S; are

the viscous parts of the stress tensors IP; = —p;I+; of each constituent:
N
Si = Z(/\z]dlvu]]l+2ul]ﬂ)(u])), 1= 1,...,N,
j=1

where \;;, p;; are viscosity coefficients, b means the rate of deformation
(strain) tensor, and T is the identity tensor.



Mathematical model of multifluids

Hence, the viscosities A;;, ;5 and v;; = Xi; + 25 ("total" viscosities)
form the matrices

A=}, M={ug}o, N={v}.

fi.=(fin,-.., fin) are external forces, and
N
le:Zaij(uj—ui), izl,...,N, Qi3 = Qg Z,]:].,,N
=1

stands for the momentum supply for each constituent.

That means: beside external mass forces f, there exist internal mass
forces between the constituents, and internal surface forces arise not only
inside each constituent but also between them.

Diagonal entries of viscosity matrices are responsible for internal friction
inside each constituent, and non-diagonal entries are responsible for
friction between constituents.



Mathematical model of multifluids

Properties of the viscosity matrices:

e Onsager principle implies that viscosity matrices must be symmetric,
but it causes strong mathematical difficulties (see below).

e Anyway, it is very important (physically and mathematically) to
validate "Second law of thermodynamics" which means

N
Zsi : D(u;) > 0. (1)

Moreover, in order to provide ellipticity we claim

N N
Z/Si : D(u;)dx > CZ/\V@ui\de, (2)

i=1 Q i=1 Q

where Q is the flow domain, and u;|go = 0.



Mathematical model of multifluids

The formulated positiveness or ellipticity can be provided by the following
properties of viscosity matrices:

nA+2M >0, M>0 (3)

provide (1),
A +2M >0, M >0 4)

provide (2), etc. (n is the dimension of the flow).
Important: viscosity matrices are not diagonal!

Momentum supply J; gives lower order terms (physically important, but
mathematically causing no difficulties), and if the matrices are diagonal
then J; is the only connection between two constituents, so we have two
NS systems connected only via l.o.t.

Earlier such problems were relevant (even in 1D), but now such results
almost automatically come from the theory of one fluid (usual
compressible NS).

If viscosity matrices are "complete" then we have interesting
mathematical problems.



Mathematical results for homogeneous multifluids

Up to now: only approximate models.

e Frehse, Goj, Malek (2002, 2005): stationary Stokes system without
convective terms (solvability in 3D space, uniqueness under
additional restrictions).

o Frehse, Weigant (2007): quasi-stationary model (3D, bounded
domain, special boundary conditions, classic solutions).

o Kucher, Prokudin (2009): stationary model (barotropic case,
bounded domain 3D, triangle matrix of total viscosities).

e Kucher, Mamontov, Prokudin (2012), Mamontov, Prokudin (2014):
steady heat-conductive (with one temperature of multi-temperature)
models (bounded domain 3D, triangle matrix of total viscosities).



Main problem

Automatic extension of the theory of compressible NS to multifluids
requires
divdivS; = const; - Adivu;, i=1,...,N,

but we have
divdiv Sy Adiv uy
=N
divdivSy Adivuy
It is possible to obtain results for triangle matrix N. However, for general
matrix N, the method is to be developed.

We first succeeded to consider the case of general total viscosity
matrices, i. e., to escape any restrictions on their structure, except some
natural properties (such as positive definiteness) which are related with
fundamental physical laws.



Assumptions

e Pressures in the constituents are equal.
e Material derivative in the constituents is based on the average
velocity of the multifluid.
Meanwhile,
e Both assumptions are physically reasonable in some situations.

e The mathematical model does not loose the variety of multifluid
models (different densities and velocities are preserved), and
moreover, it unfolds completely because

e The assumptions listed above allow to remove restrictions on the
viscosity matrix and to take into account all summands in the
viscosity terms.

Denote

1 N
v=d wn =) p (1)
=1 3

are the average velocity and complete density of the multifluid,
respectively.



Assumptions

Note that
pi . . .
5 +div (p;v) =div (p;(v —u;)), i=1,...,N, (2)
% +div (piv @ w;) + div (pi(u; —v) @ ;) — i+

(3)
+Vp; =divS; +pif;, i=1,...,N.

The underlined summands in the momentum equations (3), and the
right-hand sides of the continuity equations (2) are small under the
assumption that the phase velocities w1, ..., uy of the constituents are
close to each other. This assumption is justified physically due to the
equalizing of the velocities which takes place via the collisions of the
molecules in homogeneous mixtures.

Let us also suppose that in all constituents the pressures are equal
p1 = ...=pny = p and are defined by the total density p.



Assumptions

Thus, we come to the following equations:

i | div (psw) =0, i=1,....N, (4)

ot
d(piwi) di ) ARV — divS. _ 1 N (5
ot +div (piv ® w;) + Vp(p) = divS; + pif;; i=1,...,N (5)

for N scalar and N vector-valued (total 4N scalar) unknown functions,
where the relation between p and p (i. e. the function p(-)) is given. Note
that the momentum equations (7) may be rewritten as

_6’ui
Pi ot

+pi(V@u;)*v+ Vp(p) =divS; + p;f;, i=1,...,N,
and (V@ u;)*v = (v - V)u,;. This (non-divergent) form is inconvenient
for weak solutions, but it allows to see (common for all equations)

operator of the material derivative — = — + v - V.
P it~ ot



Statement of the problem
Problem A.

In the closure @ of the domain Q7 = (0,T) x €, where Q) C R3 is the
flow domain, T' > 0 is an arbitrary real number, it is required to define
the scalar fields of the densities p; > 0, i =1,..., N, and the vector
fields of the velocities uw;, i = 1,..., N, which satisfy the following
system of equations and initial/boundary conditions:

pi

o +div(pv) =0, i=1,...,N, (6)

8(P¢Ui)

T +div (piv @ u;) + Vp(p) =divS; + pif;, i=1,...,N (7)

Pilt=0 = pois pittili—0 = q;, i=1,...,N, (8)

wilo.ryxo0 =0, i=1,...,N. (9)



Statement of the problem

Here the pressure p is defined by the total density p via the polytropic
equation of state

p(p) = Kp” (10)

with some constants K > 0 and v > 3/2.

The initial data in the Problem A will be taken in the class

Poi € L,Y(Q), poi =0, mes({po; =0} ﬂ{qi #0}) =0,

a? (11)
9l e p@), i=1,...,N.
Poi



Statement of the problem

Consider the values (initial velocities)

q;(z)
poi(x)’

pOi(x) > Oa
ugi(z) =
extended arbitrarily, pg;(x) = 0.
Suppose that
UQZ‘GL%(Q), i=1,...,N, (12)
then wug; - q,; € Ll(Q), i=1,...,N.

Finally, the external body forces, for the simplicity, are supposed to satisfy

fi€Lo(@Qr), i=1,...,N. (13)



Statement of the problem

Definition. Weak solution to the Problem A is called the collection of
functions

pleLOO(OaTvL’Y(Q))7 pl>07 ul€L2(07T7W21(Q))7 1:177N7

which satisfy the following conditions:

(1) The densities p; satisfy the continuity equations (6) and the initial
conditions (8) in the sense that for all ¢; € C§([0,7); C>(Q)) the
following integral identities take place

0d; .
/(Pi ;; +Pi’U'V¢i) dmdt+/ﬂoz‘¢i|t:0d$=07 i=1,...,N;

Qr Q



Statement of the problem

(2) The velocities u; satisfy the momentum equations (7) and the initial
conditions (8) in the sense that for all vector fields
p; € C3([0,T); C§°(£2)) the following integral identities take place

.
/ (Piui : % + (piv ®@w;) : (V@ ;) + plp)dive; + pif; - %) d dt =
Gr

:/Si:(V®Lpi)dmdt7/qi~<pi(0,a:)da:, i=1,...,N
Qr Q

(the boundary conditions (9) are valid automatically in the sense of the

class W3 (Q)).



The main result

Theorem. Let Q C R3 be a bounded domain of the class C?T** with
some v > 0, and T > 0 be an arbitrary finite number. Then for all input
data of the class described in the Definition, and under the conditions for
the parameters described in the Definition, there exists at least one weak
solution to the Problem A.

Remark. During the proof of the Theorem, the properties of solutions,
described briefly in the Definition, are refined. For example, we prove
such properties as

/ Tt dedt <C, i=1,...,N,
Qr

2
where (; < % —1,ify<6,and {1 < 5, if v > 6, where C' depends
only on the input data of the Problem A;

i€ C0.ThLey (), VGa<n, i=1....N.  (14)



Construction of approximate solutions

Let us replace the functions pg; by smooth functions pgis € C%+2(Q),
0 < vy < 1, such that

§ < pois <O7F, Vpois-nlaa =0,
(15)
pois — poi strongly in  L,(Q), i=1,...,N,
5—0

where m in the external normal vector to the boundary 92 of the
domain €, § € (0,1] is a small parameter (which will be tend to zero
later), and the exponent

B > max{y,6} (16)

is chosen arbitrarily and will rest fixed.



Construction of approximate solutions

We look for the approximate solution of the Problem A as the solution to
the following problem (we still omit the indices m, € and ¢ for the values
which depend on them):

2 +div (piv) = eAp;,

pi‘t:() = P01, vPi'n|6Q><(0,T) :07 1= 17"'aNa

/ (mm : % + (piv@u;) : (V&) +plp)dive; +pif; - %) de dt =
Gr
— [ (Ve ue) Yo+ 8 (Top)) dedi-
Gr
—/pOini ¢, (0,x)dx, i=1,...,N.
Q



Construction of approximate solutions

The integral identities ( 8) are supposed to take place for all
P € CO([O7T)a ) 1 N
Here we denote:

o X,, = Lin{¢;}, C La(£2), where {1);}™, is a basis in W3 (Q),
which is orthonormal in L2(€2) and consists of smooth compactly
supported (in Q) functions; the norm in X,,, is set to coincide with
the norm in Lo (€2);

e ¢ € (0,1] is a small parameter (which will be tend to zero later),
e m €N (later m — +00),
o p(s) = p(s) + ds”.



Construction of approximate solutions

It is well-known from the parabolic theory that if v € C([0,T]; X,,,) is
given then

e there exist unique classic solutions to (17), i. e. p; € Vjo.77,
i=1,...,N, where

Vom ={s] g€ cqo.rc* @), % eo(or)cm@));

e the mappings S; : v — p;, i =1,..., N, are bounded from
C([0,T7; X,) to Vi1 and are continuous with the values
in C([0,T] x Q);

o forallt €[0,T], z€Q,i=1,...,N the following estimate holds

dexp(—[divvllz, 01 0)) < pilt@) <
(19)

_1 .
37F exp(\ldwvl\m(o,t;Loo(m))%



Construction of approximate solutions

o if || 1 0 mw () < Rk =1,2, R> 0, then for all t € [0,T]
andi=1,...,N

I1(Si(v") = Si(@*) (Do) <

< O(R,T,e)t]|Si(v2)(0, WMwpllv' = v? L 0mwe @)
(20)

It is not difficult to show vie the fixed point principle that there exist
70 € (0,T) and u; € C*([0,70); Xm), i = 1,..., N, which satisfy the
equations (18), in which T is replaced by 79, and p; = S;(v),
i=1,...,N.

In order to extract the local solution to an arbitrary time interval [0, T7,

we prove the uniform (with respect to 7o) boundedness of the solutions
u;, i =1,..., N, to the equations (18) in the space C([0,T]; X,»).



Limit with respect to m — 00 in the approximate
continuity equations

Let us obtain the estimates of the solutions to the problem (17), (18),
which would be uniform with respect to m, and which would be the basis
for the limit with respect to m — 4o00. We first note that (15) imply the
inequalities

b g 0) oy
Poj

and (17) yield that the density ratios ik satisfy the equations
Pj

(B (2) = (3(2)2v(2) Tt 1=ty

which provide the crucial relations (for all ¢ € [0,T], = € )

0< 8 g ) < pite) <6 g, hj=1. N (21)



Limit with respect to m — 400 in the approximate
continuity equations

Let us take in (18) the test functions ¢, = x;u;, i = 1,..., N, where
xi € C3[0,T),i=1,...,N, and we obtain

1 - N
/ (2 Zﬂz’(fﬂui(f)P + Nh(p(t))> dx + / ZSi (V@ u;) da dr+

Q

+Ne /7|Vp|2da:dr—/z,olf -w; de dr+
Qs i=1

—i—/ (2 Zp0i|u0i|2 +Nﬁ(/’0)> dx vt e 0,71,
& i=1
(=5

where 1

D K )
]ﬁ?dnzﬁyl(s“’—s)—i—ﬂl(sﬁ—s).



Limit with respect to m — 400 in the approximate
continuity equations

This directly gives the estimate (uniform in m and ¢)

N N
sup / (Zpl|uz|2 +p7 + pﬁ) dr + / Z IV @ u;|? de dt+
0StST i=1 i=1
Q Qr
+e /(;ﬂ_2 + o) VplP de dt < C.

Qr



Limit with respect to m — 400 in the approximate
continuity equations

Furthermore, (22) immediately gives the estimates (uniform in m and ¢)
lpillLoo,riLs0) <C, i=1,...,N, (23)

IvPitill Lo 0,7:02)) + Wil oo, mwi )y <€, i=1,...,N, (24)

and consequently, via (21), we have

Ivpivll Lo,y <C, i=1,...,N. (25)

Taking into account (22), we obtain the estimate of p; in
Ls(0,T; L3g(£2)), and thus for all 6; € [0, 1] we obtain the estimate

i <C, t=1,...,N, 26
lpill B(OTL33B @) c, i (26)

o1

from which (for 6; = 3/5) we get ||Pz||Li,3



Limit with respect to m — 400 in the approximate

continuity equations
From (26) as #; = 1 and the second estimate in (24) we have

Al (ors

68
B+1 B+1

@) SC i=LN,

and now, using the first estimate in (24), we get for all 6, € [0, 1]
||\/,0>Z'U,Z||L 25 (O,T;L o5 (Q)) < C, 1= 1, ey N. (27)
CPYGESY) (3-205)5+03

Now we multiply the equations (17) by p; and integrate the result over
Q,sowegetfori=1,..., N

N
1
H\@VMHQLQ(QT) < 9 (||POi||2L2(Q)+‘/TZ “pi“%w(O,T;L4(Q))||V®uiHL2(QT)>7
i=1
and after that (due to 8 > 4) we obtain the uniform (in m and ¢)
estimates



Limit with respect to m — 00 in the approximate
continuity equations

Basing on (23), (24) and (28), we select a subsequence (with the same
notation) from the sequence w;p,, pim, m € N, of the constructed
solutions to the problem (17), (18), for which for all m — 400,
i=1,..., N, the following convergences take place (below, we write the
index m for the values which depend on it)

pim — pi weakly* in Lo (0,T;L,(€)) and in Lo (0,T;Lg(Q)),

Vpim — Vp; weakly in Ly(Qr), (29)
Wiy, — w; weakly in LQ(O,T; W;(Q)), (30)

and hence .
vy, — v weakly in Ly (0,7; W5 (9)), (31)

1N
where v = N;uz



Limit with respect to m — 400 in the approximate
continuity equations

Let us prove the strong convergence of the densities. The estimates (26)
and (27) yield

l2im Wim ||L 25 (O,T;L 68 (Q)) +
935+01+03 (3-205)5+02-201%3
(32)
+Hpim”mHL 25 (O,T;L 68 (Q)) s¢
TAT0I T (8-202)F #0201 43

foralli=1,...,N, (61,67) € [0,1]>.
The equations (17), due to (28) and (32) with 6; = 63 = 0, provide

<C, i=1,....N.
Lo (075w 3L (@)
B+1

8pim
ot




Limit with respect to m — 400 in the approximate
continuity equations

Thus, the sequences p;y,, i = 1,..., N, are uniformly continuous with

respect to t € [0, T] with the values in W3 (Q) = <W12B (Q)) .
B+T B-T

Then, due to (23), we come to the convergence (here we select
subsequences and preserve the notations)

pim — pi as m — +oo in C([0,T); Lgweax(2)), i=1,...,N. (33)



Limit with respect to m — 400 in the approximate
continuity equations

Furthermore, due to the embeddings

_ 63
W () = Ly, (Q) = Wi () forall o € {Wﬁ) ,
the sequences {p;,} are bounded in
Loo(0,T; Ly, () () L2(0, T; W (), and { 82’;” } are bounded in
Lo (O,T; Wi (Q)) we obtain via the Loins-Aubin theorem, that for all

. B+1
i=1,...,N asm — +00

pim — pi strongly in L,,(0,T; Ly, () Vo2 < +o0. (34)



Limit with respect to m — 400 in the approximate
continuity equations

Now, using (26), we get

Pim — pi as m — +oo strongly in L,,(0,7;L,,(Q), i=1,...,N
(35)

, here at least one inequality must be strict.

3
for all o3 < 9’% o4 < 3_B291

Choosing arbitrary 61, 65 in (32), after selection of a subsequence, we
may affirm the convergences

PimWim — Pilli,  PimUm — p;v  weakly* in the space (32).  (36)



Limit with respect to m — 400 in the approximate
continuity equations

Now, passing to the weal limit as m — +o00 in (17), we obtain that the
limit functions v, p;, i = 1,..., N, satisfy the equations

09;

Qr - Q
V¢ € CH([0,T);C°(Q)), i=1,...,N.
(37)
Let us prove that the limit functions v, p;, i = 1,..., N satisfy a. e. the
equations, initial and boundary conditions (17).



Limit with respect to m — 400 in the approximate
continuity equations

The classic estimates of parabolic equations yield (due to 8 > 6) the
uniform (in m and ) estimates

€||Vpim||Lal (0,T5Lay(92)) < Ca 1= 17 ceey Na (38)
where
ay = 72ﬂ ay = 66
YT 028460, + 06y T (3-20,)B8+0, — 20, +3

for all (61,6) € [0,1]*\{0,0}.



Limit with respect to m — 400 in the approximate

continuity equations
Then fori=1,...,N

e[lV® (pimmm)HLa3 (0.7:La, () +

+e|V® (Pimvm)HL% (0.7 () +el(Ve Uim)*Vﬂim"La3 (O)T;L%(Q))—F
427 9 0) Vol (01 ) < C-
(39)
where a3 = 26 oy = 65
57 (92+1),8+01+92' 1T 2(2—92)ﬁ+92—291+3’
o5 = 65 for all
T 32-0,)B8+6,—20, +3
3—-20, B—0,
0, €10,1], 6, € , 40
vebal e (3220 020 (40)

(these restrictions provide a3 5 > 1).



Limit with respect to m — 400 in the approximate
continuity equations

Involving again classic estimates of parabolic equations, we conclude for
i=1,...,N

1—-L
e % [lpiml

H 8pzm
Lo (0,T~ N “3 )

(0.7:La, ()
(41)

. =35 1 pos 1
+€||pzmHLa3 (O’T§Wg4(ﬂ)) < C (E 3 ||p01||W27aL3(Q) + €> .

aq

From (41) we obtain that the limit functions p;, u;, i = 1,..., N, belong
to the following classes:

%i .. (0,T;Las(),  pi € Loy (0,T; W2,(9),

V&(piv) € La, (0,T; La, (), i=1,...,N

and satisfy the equations (17) a. e. in Q7.



Limit with respect to m — 00 in the approximate
continuity equations

Note that (42) yields
pi € C([0,T]; Lo, (22), i=1,....N.

From (33) we may conclude that for all t € [0,T] pim(t) = pi(t) as

m — +oo weakly in Lg(Q), i =1,..., N, in particular, for t = 0 it
allows to affirm that the initial conditions (17) are valid a. e. in §2 for the
limit functions as well.

From (41) we conclude that for a. e. t € (0,T) pim(t) — pi(t) as
2004 .
i=1,...,N,

m — +oo weakly in W2 (Q) — W, (99), o = 3 ,
o

and since the boundary condition (17) is valid for p;y,, ¢ = 1,..., N, then
Vpi-n=0fora.e (t,z) € (0,7) x0Q,i=1,...,N.



Limit with respect to m — 400
in the approximate momentum equations

Involving the estimate (32), we get

PimWim — pi; as m — +oo strongly in L, (0,T; L, (22)),i=1,...,N,
(43)
where for all 8, € (0, 1]

28 o 63
(0o + 0B+ 01 +0;" % (3—04—205)3+05—20, +3

o7 =



Limit with respect to m — 400
in the approximate momentum equations

Now due to (30) we conclude that as m — +o0o

PimWim Uiy — piu;Qu; weakly in Ly, (O,T; LUIO(Q)), i=1,...

PimWim Q@Um, — p;u; @v weakly in Ly, (O,T; Law(Q)), i=1,...
h 25
where g = )
’ (O + 04+ 1)3+ 61+ 05
6
010 = P at that 19 > 1 due to the

(4—04—205)8+ 0y — 20, +3
conditions introduced above, and o9 > 1 provided the inequality

94<1—92—01;02

, whose right-hand side is positive due to (40).



Limit with respect to m — 400
in the approximate momentum equations

Let us prove now the strong convergence of the gradients of the densities
in La(Qr). From (17) we get for i =1,...,N

T

1

3o @@+ [ @ = DIVoim(01F 0 dt =
O

(40)
T .
= §||p0i||L2(Q) - 5/ —t /pim(t)dlv v (t) dadt.
Q

0



Limit with respect to m — 400
in the approximate momentum equations

On the other hand, for i = 1,..., N we have similar identities for the
limit functions

T
1
SO0+ [(@ = DITROIR 0 dt =

0
T
0/ / t)divo(t) dedt.

(47)
T
5 leoillZ2()

l\DI»—t



Limit with respect to m — 400

in the approximate momentum equations

Passing to the limit in (46) as m — 400, using (31), (35) and
subtracting (47) from the identities obtained, we come to the relations

T

m——+oo
0

These equalities together with (29) show that asm — +o0
Vpim — Vp; strongly in Ly(Qr), i=1,...,N,
and hence, due to (38),
Vpim — Vp; strongly in Ly, (0,T; Ly, (€2))

VO'HE(Q,OQ),O'QE(Q,O[Q), izl,...,N,

at that, due to (40), a2 > 2, that yields compatibility of the conditions
for 011,12-

T
tin [0 pin Ol 0y dt = [(@=OITpiON 0yt =1,
0



Limit with respect to m — 400
in the approximate momentum equations

Using (30), we also obtain that for m — +oco foralli=1,...,N

(V& Uim) " Vpim = (V®u;)"Vp; weakly in Ly,,(0,T; Ly, (2))
2041 20[2
A 1, —— 1 .
013 € < ’2—}—041)’ 014 € ( ’2+a2>

Now the limit in (18) as m — 400 becomes trivial.

(48)



Limit with respect to m — 400
in the approximate momentum equations

For all ¢, € CL([0,T); C4(£)) the following equalities hold

5] ~ .
[ (b S5t oo sw) (T + Flo)dive, + pif, - ) dodi =
Qr

- / (Y @ w)p)) - Vi 8 (Vo p,)) da i~
Qr
_/pOiUOi"Pi(O,CB)dCB, i=1,...,N.
Q



Limit with respect to m — 400
in the approximate momentum equations

Energy relations: for a. e. t € (0,T)

N
1 ~
[ (G pus) + Nitp(0)) de+
Q i=1
N
+CO/Z|V®ui|2dwdT+N&r&ﬁ/pﬁ_2|v,o|2da:dr <
Q1 i=1 Q

ol N
</Z}Pifi-uida:df—l—/(;;p0i|uOi|2+Nﬁ(po)) .

Qtl Q

(49)



Limit with respect to € — 0, except the terms with the
pressure

Let us first obtain the estimates of solutions to the problem (17), (18),
which would be uniform in the small parameter £. From the inequalities
(21)—(25), (28), and the relations (29), (30) and (34) we derive, for

it =1,..., N, the estimates (now we start to write the index ¢ for the
values which depend on ¢)

0< 6" Hpc(ty@) < picltym) <3 (T5) (@) fora.a. (ta) € Qr,

(50)

lpicll Lo 0,7505 () < O, (51)
|picltic* || Lo 0,752 (9)) + N Piclve Pl L 0,730 (2)) +

(52)

HllwicllLy0,mwi ) < Cs

\Eva)is”LﬂQT) <C. (53)



Limit with respect to € — 0, except the terms with the
pressure

From (51) and (52) we derive, for all i =1,..., N, the estimates

|| pictic ||L2 (O,T;Lﬂ (Q)) + | pictic ||Loo (O,T;Lﬂ (Q)) +
B+6 B+1I

(54)
+||pisvs||L2 (O,T;Lﬁ(ﬂ)) + ||pieve||LoQ (O,T;Li(ﬂ)) < C,
B+6 B+1
from which we obtain, for all 85 € [0, 1], the inequalities
||pi6ui6HLl (O,T;L 68 (Q))+
o5 (3—205)B8+3(05+1)
(55)

Howval, orw @) SO = L.

5 (3—205)B+3(05+1)



Limit with respect to € — 0, except the terms with the

pressure
Then the equations (17) provide, for all i = 1,..., N, the uniform (in €)
estimates
€||Vma||Ll(07T;L o @) S¢ (56)
75 B=205)p 1300570

for all 5 € (0,1]. Hence for all i = 1,..., N the following inequalities
hold

5||V®(pisuis)||L Y (O,T;L )+
[

68 Q)
2(2—-605)B+3(05+1)

Jr€”v® (pisvs)” Q))Jr

L 5 (073

63
O5+1 2(2—05)B+3(05+1)

+el|(V @ wie) Vol

051

(0.1:L @) +

68
2(2—05)B+3(05+1)

+EH(V & UE)*vpiEHL R

< C.
(0.1:L o5 @)
O5+1 2(2—05)B+3(05+1)



Limit with respect to € — 0, except the terms with the
pressure

Finally, from (52) and (55) we derive, for all 4,5 =1,..., N, the
estimates

lpiewie ®wiell, , (oz (@)

8
05+1 2(2=05)B+3(05+1)

) < C. (58)

Furthermore, using the properties of Bogovskii operator, we refine the
integrability of the densities:

/pzﬁs+1dwdt<07 Z:17>N (59)
Qr



Limit with respect to € — 0, except the terms with the
pressure

Due to the estimates (51), (52), (53) and (59), we may select a sequence
(with the same notation) from the family w;., p;c, € € (0, 1], for which as

e —0foralli=1,...,N, the following convergences take place
Pie = Pi * _Weakly in Lo (OvT; LB(Q))v (60)
w;. — u; weakly in Ly (0, T; W5 (9)), (61)
eVpie — 0 strongly in La(Qr), (62)

pie = pi weakly in L1 1(Qr), (63)



Limit with respect to € — 0, except the terms with the
pressure

o= o], Blp:) = Blp) weaKly in Luss (Qr), p) >0 a.e.in Qr
(64)
and
pw—>pZ weakly in L5+1 (Qr), >0 a. e in Qp,

where pf, g i1=1,...,N, and p( ) denote weak limits of the
sequences p’fs, P, i = 1, ..., N, and p(p.).



Limit with respect to € — 0, except the terms with the
pressure

From the equations (17) (for the functions v., p;., i =1,..., N) due to
(53) and (54) we derive fori =1,..., N

opi
B
L (017w} (@)
B+1
Thus, the sequances p;c, t = 1,..., N, are uniformly continuous with

respect to t € [0, 7] with the values in W73} (Q) = (Wlw (Q)) . Then,
cE=s B=1

due to (33) and (51), we come to the convergence (selecting
subsequences and preserving the notations)

pie = pi as € =0 in C([0,T]; Lg weax(2)), ¢=1,...,N. (6b)



Limit with respect to € — 0, except the terms with the

pressure
Since the embedding of Ls(Q) into W, '(Q) is compact then

pie = pi as € =0 in L,(0,T;W;'(Q)) Vpe[l,+oo), i=1,...,N.

Selecting arbitrary 05 in (55), we may affirm (after the selection of a
subsequence) that

DicWic = Pili, pPieVe — p;v weakly in the space (55), i=1,...,N.

(66)
Now we get from (17) that the limit functions v, p;, i = 1,..., N, satisfy
the equations

09;
/(Pi aq; +Piv'v¢i) dxdt"’//’@i@bi‘t:o de =0
Qr . Q

V¢, € Cy([0,7);C>(Q)), i=1,...,N

(67)

(the weak form of (6)), which mean, due to (65), that p; satisfy the
initial conditions in (17) in the sense of the space C'([0,T; Lg, weak(£2)).



Limit with respect to € — 0, except the terms with the

pressure
From the equations (18) (for the functions w;., pic, i = 1,...,N) due to
(52), (57), (58) and (59), we derive for i = 1,..., N that
H 8(pi£uia) <C.
ot L s (o.1sw3t, (@)
5+1 B
Thus, the sequences p;-ui., 1 = 1,..., N, are uniformly continuous with

respect to ¢ € [0, 7] with the values in W, (Q) = (WéH(Q)) . Then
e

we come to the convergence (after the selection of a subsequence and
preserving the notations)

PicWic — p;u; as € — 0 in C([O,T];L%Meak(Q)), i=1,...,N.
(68)



Limit with respect to € — 0, except the terms with the

pressure

Since the embedding of L%(Q) into W, *(Q) is compact, then due to
+

the estimate (58) we obtain

PicWie @ Uje — PilU; ® Uu; as € — 0

(69)
weakly in L_» (O,T;L 68 Q)), i,j=1,...,N.
0511

3(2-05)+3(05 1)

Now, involving (61) and (62), we may pass to the limit in (18) as e — 0
and to obtain

5]
[ (o 224 (s 0 0) s (Vo ) + Fpdivp, + pif - 0,) dadt =
Qr

= /Si (VR ;) drdt — /pgium -, (0,x) dx
Qr
(70)

for all p; € C3([0,T); C5°(2)), i =1,...,N.



Conclusion of the limit with respect to ¢ — 0

Thus, in order to finalize the limit with respect to ¢, it remains to prove
that

p(p) =p(p) a. e in Qr. (71)
Let us consider, for all i =1,..., N, the so caIIed effective viscous fluxes
of the constituents of the multifluid p(p Z vijdiva;, the
Jj=1

corresponding values for the regularized problem p(p.) Z vijdivuge,

and their weak limits in L%(QT):

N
— E I/ijdiV’U,j.
Jj=1



Conclusion of the limit with respect to ¢ — 0

We are going to use the operator A~! which acts via the formula

@A) =4 [ Y,

3
and to apply it to the functions v € L,,,(2), 016 > 5 which are

extended as zero outside . With that, A™' : L, () — W2 (), and
AoA~l=T.

From the equations (17) (for the functions v., p;., i =1,...,N), after
elementary transformations (which are valid due to the restriction (40)
and analogues of the estimates (39) and (41) after the limit as

m — —+00), we come to the identities

87']'6

ot

= —VdivA~!(p;.v.) +eVpje, j=1,...,N, (72)

in which we used the notations r;. = VA™lp;., j=1,...,N.



Conclusion of the limit with respect to ¢ — 0

Let us take in the equations (18) (for the functions w;c, pje,
it=1,...,N) the vector fields ¢; = ¢¥7r;., i,j =1,..., N, as the test
functions, where

Y e C§o(0,T), T € C5° (). (73)

Then, taking into account (72), we come, for all i,5 =1,..., N, to the
equalities

/ v (Tﬁ(ps)pjs —Sie : (V & (T’I’js))) dxdt =

Qr
= [0 )Vr v dwidt — = [ oo V. dwde-

- / wT(pievs by uie) : (v & 'I“jg) dxdt+
Qr

+ / YT pictic - VAVA™ (pjev.) dedt—
Qr



Conclusion of the limit with respect to ¢ — 0

- /1/J(Piave ®ui) : (VT @ 7)) dedt — /"/}Tpisfi -1 dedt—
Qr Qr

B / %Tpisuia “Tje dedt + ¢ / wT(v ® uis)*Vpia *Tje dxdt.
QT QT

Note that from (65) and the compactness of the embedding of W;(Q2)
into C(Q), it follows that for ¢ — 0 we have

rie =71 in C(Qp), j=1,...,N. (75)



Conclusion of the limit with respect to ¢ — 0

On the other hand, taking in (70) the vector fields ¢, = yTVA™!p;,
1,7 =1,..., N, as the test functions, we derive the identities

/w (75000~ 8+ (V@ (7)) dadt =
Qr
— / Yp(p)VT - 1; dedt — /w(piv @u;): (V®r,)ded+
Qr Qr
+ / Yrpiu; - VdivA™ (pjv) dedt — / P(piv @u;) : (VT @ 1)) dedt—
QT T
dy o
— [ Y1pif; - 7jdedt — ET[)Z'UZ' ~rjdxdt, i,j=1,...,N,
Qr Qr
(76)

where r; = VA~ !p;, j=1,...,N.



Conclusion of the limit with respect to ¢ — 0

Subtracting (76) from (74) and passing to the limit as € — 0, we obtain,

due to (52), (54), (58), (59), (62)~(64), (66), (69) and (75), the

relations (for ¢,5 =1,...,
tiy [ 6 (77 (pe)pse — Sic (T (7r2) dde-
— 7 " (Tp( Yoi —Si: (V& (rrj))) dadt =
= lim / U7 (pietse - VAvAT (pyev) — (pieve © wie) : (V @ 70) ) dacdi—
/ wT pi; - VAivA™ (pv) — (piv @ u;) : (V@ rj)) dxdt.

(77)



Conclusion of the limit with respect to ¢ — 0

Let us analyse the right-hand side of (77) (we are going to prove that it
equals zero). Consider the operator Comm which acts as

Comm(z,7) = (V® VA™'2)T — (Ve VA™!T),

and whci is known to possess the following properties: if z;, — z in
Loy (), 7 B 7in Ly, (), where 017" + 01 < 1, then
Comm(zg, 71,) — Comm(z,7) in Ly, (), where o1 = 077 + 05



Conclusion of the limit with respect to ¢ — 0

Let us rewrite the right-hand side of (77) in the form

lim ¢< PjeVe - VAIVAT Yrpictic) — (Tpicve @ uie) : (Ve 'rjg)) dxdt—

e—0
Qr
- / w(pjv VAivA~ N piug) — (Tpiv @) : (V® rj)) dxdt =
Qr
=lim [ ¢v. - Comm(Tp;-use, pjc) dedt—
e—0

Qr
— [ Yv - Comm(rp;u;, pj) dedt, i,j=1,...,N.
Qr



Conclusion of the limit with respect to ¢ — 0

It follows from (65) and (68) that for all t € [0,7], i =1,...,N

pic(t) — pi(t) weakly in Lg(Q), picwic(t) = piu,(t) weakly in L%(Q),
and consequently

Comm(Tpi-Uic, pjc) = Comm(7p;u;, p;) weakly in L%(Q), ,j=1,...,N

and since the embedding of L%(Q) into W, () is compact, then due
to (51) and (54) we conclude

Comm(7Tpictic, pje) — Comm(Tp;u;, pj)

strongly in Lg,, (0, T; W, 1 (Q)) for all 099 < 00, i,j =1,...,N.



Conclusion of the limit with respect to ¢ — 0

These relations together with (61) lead, for all i,j =1,..., N, to the
equalities

lir% Yv. - Comm(TpicUic, pje) dedt = /1/1v~Comm(Tpiui,pj)dmdt.
E—
Qr Qr

Thus, it follows from (77) and (78), that

tig [ (7 (p2)pse — Sic (V0 (7)) dwdt =
Qr

_ (79)
= /w (Tﬁ(P)Pj -Si: (V® (Trj))) dxdt, i,7=1,...,N.
Qr



Conclusion of the limit with respect to ¢ — 0
Finally, since
tim [ S (V@ (rr,.)) dadt - /wsi (V@ (rr))) dadt =
Qr Qr

N N
= lim > v / U7 pjediv ke dzdt — vy / Yrpjdivuy dedt+
k=1 QT k=1 Qr
N
+ lim kzl Vik / Ydiv uge (2VT -7 + (AT) A pj) deedt—
= Qr

N
— Z Vik / Ydivug(2VT -7 + (AT)A p,) dedt—
=L Qr

— lim / USic 1 (V@ [(VT)A™ pj.]) dedt+

e—0
Qr
+/¢Si (Ve (Vr) A p]) dxdt, i,j=1,...,N,
Qr
(80)



Conclusion of the limit with respect to ¢ — 0

then (due to (52) and (61) the last four integrals in (80) annihilate) the
equalities (79) transform into the following relations for the effective
viscous fluxes of the constituents of the multifluid

hm /¢7P35< Pg ZyzkdIVU]%) dxdt =

(81)

/ YT, < Z Vlkdlvuk> dxdt, i,7=1,...,N.



Conclusion of the limit with respect to ¢ — 0

It follows from (81) that

lim /1/)7'/)5 (vop(pe) — divo,) daedt = /z/JTp (Vosz) - divv) dzxdt,

e—0
Qr Qr
(82)

_1.

> 0, and J is the N x N-matrix, all entries of which

where 1y =

are equal to 1.



Conclusion of the limit with respect to ¢ — 0
Since 1 and 7 are arbitrary, the relation (82) means that
vopp(p) — pdive = vopp(p) — pdive a. e.in Qr. (83)
Since the renormalized equations(6) are valid, then, in particular, for the

functions G € C[0,00) (N C(0, 00) such that
Jlim (sG (s) - G(s)) € R, )é'(s)\ < Csom

for all s € (1,00) with some o971 < g — 1, the following equations are
valid in D'((0,T) x R3):

oG (p ~ - )

9C0) | div(@(pyo) + (66(5) — Glp))ive =0,

from which, for G(s) = sIn s, it follows that (for a. a. ¢ € (0, 7)) the
equation

/(plnp)(t) dx — /polnpo dx + /pdivv dxds =0 (84)
Q Q Q¢
holds.



Conclusion of the limit with respect to ¢ — 0

On the other hand, adding together the relations (17), we get

N
9] .
8;:; +div (peve) = eApe,  peli=o = po = ;Pm, Vpen|saxor) = 0.
(85)
Multiplying (85) by In(p. + h) + pj_ X h € (0,1], integrating the result
pe

over (¢, and then making trivial estimates and passing to the limit as
h — 0 and € — 0, we obtain

/plnp(t) dx — /polnpo dx + /pdivv dxdr < 0. (86)
Q Q Qt
Combining (84) and (86), we come to the inequality

/ (Paive — pdive) dadr < / ((plnp) (1) — plup(t)) de. (87)

Q+ Q



Conclusion of the limit with respect to ¢ — 0
Due to the monotonicity of the function p(-) (remind that
p'(s) = Kvys7~1 +63s°~1), the pointwise inequality
(pe — p)(D(p:) — P(p)) = 0 holds, due to which and the formulae (63),
(64), we derive
lim [ (p(pe)pe — plpe)p) dadt =

e—0
B

= lim [ (p(pe) = D(p))(pe — p) dadt + lim / p(p)(pe — p) dzdt > 0,
B

e—0
B

where B denotes an arbitrary ball in Qr, hence

p(p)p = plp)p a e in Qr.
Then it follows from (83) that

pdivo — pdive > 0 a. e.in Qr.



Conclusion of the limit with respect to ¢ — 0

Coming back to (87), we now obtain the relation
[ (o))~ api0)) d > 0.
Q

from which, using the properties of the function s — slns (namely, its
weak lower semicontinuity and strict convexity), we conclude that

pe = p a. e in Qr, (88)

and the proof of (71) is complete.

Therefore, the functions p;, u;, i = 1,..., N, form a solution to the
Problem A, in which, however, the value p in (7) is still substituted by p.



Limit with respect to 6 — 0

The limit procedure with respect to 6 — 0 is based, in general, on the
same ideas as were used above, but contains some more sophisticated
technical details. This procedure may be found in the publications listed
below.
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