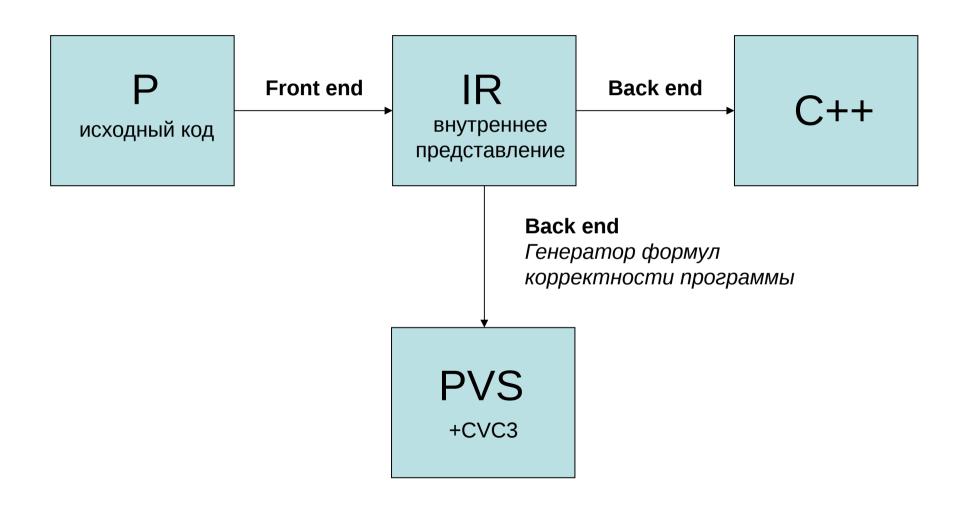
Генерация условий корректности предикатных программ с взаимной рекурсией

Чушкин М.С ИСИ СО РАН, Новосибирск

Система предикатного программирования



Определение предиката

- A(x: y) pre P(x) { S(x: y) } post Q(x, y)
- А имя предиката
- S(x: y) onepamop
 - x, y наборы переменных, аргументы и результаты
- Спецификация предиката А(х: у)
 - Р(х) предусловие
 - -Q(x, y) постусловие

Пример определения предиката

```
HOД(nat a, b : nat c)
pre a >= 1 \& b >= 1
  if (a = b)
       c = a
  else if (a < b)
      HOД(a, b - a : c)
  else
       HOД(a - b, b : c)
post gcd(c, a, b)
measure a + b;
```

Классические методы

- Метод Флойда
 - "Assigning meanings to programs", 1967
- Метод Хоара
 - "An axiomatic basis for computer programming", 1969

Понятие логики

- Логика оператора S(x: y)
 - сильнейший предикат, истинный при завершении исполнения оператора S(x: y)
- Примеры:
 - $-L(a := E(x)) \cong R(x) \& a = E(x)$
 - $-L(B(x; z); C(z; y)) \cong \exists z. L(B(x; z)) \& L(C(z; y))$

Понятие корректности

- Корректность оператора S(x: y)
 - $P(x) \& L(S(x: y)) \Rightarrow Q(x, y)$
 - условие частичной корректности
 - P(x) \Rightarrow ∃y. L(S(x: y))
 - условие завершения оператора
- Corr(S, P, Q)(x) = $P(x) \Rightarrow [L(S(x; y)) \Rightarrow Q(x, y)] \& \exists y. L(S(x; y))$

Корректность рекурсивного предиката

• Схема индукции:

$$(\forall u \in X \ m(u) < m(t) \Rightarrow W (u)) \Rightarrow W (t)$$

$$W(x)$$

- W произвольное утверждение
- m функция мера
- Корректность рекурсивного предиката

Induct(A, P, Q)(t)
$$\Rightarrow$$
 Corr(A, P, Q)(t)
Corr(A, P, Q)(x)

- Induct(A, P, Q)(t) $\equiv \forall u \ (m(u) < m(t) \Rightarrow Corr(A, P, Q)(u))$

Корректность рекурсивной программы

• Рекурсивная программа

```
A_i(X_i x_i: Y_i y_i) pre P_i(x_i) { S_i(x_i: y_i) } post Q_i(x_i, y_i) measure m_i(x_i);
```

- -i = 1, ..., N;
- в телах $S_i(x_i: y_i)$ могут встречаться вызовы предикатов $A_1, ..., A_N$
- Корректность рекурсивной программы
 - $\forall t_1$, ..., t_N Induct $(A_1, P_1, Q_1)(t_1) \land ... \land Induct(A_N, P_N, Q_N)(t_N)$ $\Rightarrow Corr(A_1, P_1, Q_1)(t_1) \land ... \land Corr(A_N, P_N, Q_N)(t_N)$
 - Induct(A_k , P_k , Q_k)(t_k)

$$\equiv F(t_k; t_k) \wedge m(t_k) < m(t_k) \Rightarrow Corr(A_k, P_k, Q_k)(t_k)$$

Построение связующих формул

- Связующая формула F(x_k: x'_k)
 - Формула, выражающая произвольные фактические параметры х'_к пердиката А_к через его формальные параемтры х_к
- Метод построения связующих формул
 - $-A_k(x_k: x'_k)$
 - $\{ F_r : X_r \rightarrow X'_k \mid r = 1, ..., N \}$
 - F_к искомая

Примеры правил вывода

Условный оператор:

Corr(B, P & E, Q)(x);
Corr(C, P &
$$\neg$$
E, Q)(x)

Corr(if (E) B(x: y) else C(x: y), P, Q)(x)

Оператор суперпозиции:

$$P(x) \Rightarrow \exists z. L(B(x: z));$$

Corr(C, P & L(B(x: z)), Q)(x)

Corr(B(x: z); C(z: y), P, Q)(x)

Генерация условий корректности

- Шаг 1. Преобразование предиката
 - a = E оператор присваивания
 - A(x: z); B(z: y) оператор суперпозиции
 - A(x: y) || B(x: y) параллельный оператор
 - a, b = 1, 2 групповой оператор присваивания
 - **if** (E) A(x: y) **else** B(x: y) условный оператор
 - **switch**(...) ... оператор выбора
 - foo(u: v) оператор вызова

• **Шаг 2.** Вывод условий корректности *Правило вывода:*

$$\frac{\Gamma_1; \Gamma_2; \dots \Gamma_n}{F}$$

- Г_і посылки
- F заключение

Виды посылок:

- A ⇒ B формула
- Corr(S, P, Q)(x)

- **Шаг 2.1.** Вывод формул
 - A → B формула
 - A, B конъюнкции
 - Могут содержать логику L(S(x: y))
 - Группы правил
 - Правила для общего случая (**Q**)
 - Правила для корректных подоператоров (**R**)

- **Шаг 2.2.** Декомпозиция L(S(x: y))
 - A & L(S(x: y)) \Rightarrow B
 - Вхождение логики в левой части (FL)
 - $A \Rightarrow L(S(x: y))$
 - Вхождение логики в правой части (F)
 - $A \Rightarrow \exists y L(S(x: y))$
 - Вхождение квантора существования (Е)

Корректность алгоритма

- Допустимость правил
 Частично доказана
 <u>http://www.iis.nsk.su/persons/vshel/f iles/rules.zip</u>
- Корректность реализации Проверялась тестированием

Пример

// Formulas

```
formula P(nat a, b) = a >= 1 & b >= 1;

formula Q(nat a, b, c) = gcd(c, a, b);

formula m(nat a, b : nat) = a + b;
```

// Lemmas

```
lemma forall nat a, b. P(a, b) & a = b => exists nat c. c = a;

lemma forall nat a, b, c. P(a, b) & a = b & c = a => Q(a, b, c);

lemma forall nat a, b. P(a, b) & a != b & a < b

=> m(a, b - a) < m(a, b) & P(a, b - a);

lemma forall nat a, b. P(a, b) & a != b & a >= b

=> m(a - b, b) < m(a, b) & P(a - b, b);
```

Заключение

- Результаты
 - Разработан метод дедуктивной верификации предикатных программ с произвольной рекурсией;
 - Реализован генератор формул корректности в системе предикатного программирования
- Дальнейшие планы
 - Разработать правила для оставшихся конструкций языка Р