МОДЕЛИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ С ПОМОЩЬЮ РАСПРЕДЕЛЕНИЙ С ТЯЖЕЛЫМИ ХВОСТАМИ

Долгая А.А.

Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский Камчатский государственный технический университет, г. Петропавловск-Камчатский adolgaya@kscnet.ru

Исследование посвящено моделированию рядов значений временных интервалов между очагами землетрясений различного магнитудного и временного диапазона, произошедших в разных регионах планеты, с помощью распределений Парето и Вейбулла (Вейбулла-Гнеденко), относящихся к классу распределений с тяжелыми хвостами [1].

Исследование предполагает выполнение нескольких этапов:

1) Формирование выборки событий.

Было сформировано 11 совокупностей событий, охватывающих различные по масштабу и длительности регионы и временные интервалы. Параметры выборок представлены в таблице.

Таблица Параметры выборок сейсмических событий, участвовавших в исследовании

№	Регион	Временной	Магнитудный диапазон				
		интервал	<i>M</i> ≥6	<i>M</i> ≥6.5	<i>M</i> ≥7	<i>M</i> ≥7.5	<i>M</i> ≥8
1	Планета	1900-2013	8482	3440	1846	644	114
2	Окраина Тихого океана	1900-2013	6578	2675	1474	502	118
3	Окраина Тихого океана	1950-2013	5173	1684	662	232	47
4	Окраина Тихого океана	1950-1970	922	448	248	80	17
5	Северо-Западная окраина Тихого океана	1900-2013	3029	985	477	148	36
6	Япония, Курилы, Камчатка	1900-2013	2430	765	367	117	27
7	Юго-Западная окраина Тихого океана	1900-2013	2292	1062	619	209	45
8	Восточная окраина Тихого океана	1900-2013	937	496	288	124	30
9	Южная Америка	1900-2013	800	424	256	111	27
10	Индонезия	1900-2013	360	144	73	31	12
11	Срединно- Атлантический хребет	1962-2013	246	68	17	2	0

Анализировались также две последовательности вулканических извержений, произошедших в пределах окраины Тихого океана за периоды 1900-2013 и 1800-2013 с $W\ge 2$ (N=519) и $W\ge 3$ (N=1709) соответственно.

2) Формирование экспериментальной последовательности.

Экспериментальные последовательности составлялись из значений временных интервалов в днях между двумя соседними событиями. Полученные распределения затем упорядочивались по возрастанию, после чего проводилась группировка значений временных интервалов. Вычисленные количества интервалов, попавших в группу, представляли собой экспериментальные последовательности.

3) Построение теоретической последовательности.

В качестве теоретических законов распределения использовались законы распределения Пуассона, Парето и Вейбулла (Вейбулла-Гнеденко).

Закон распределения Пуассона задается формулой:

$$f_t(m) = \frac{e^{-\lambda t} (\lambda t)^m}{m!},\tag{1}$$

где λ – единственный параметр распределения, интенсивность потока.

Закон распределения Парето является степенным распределением, плотность вероятности задается формулой:

$$f_X(x) = \begin{cases} \frac{kx_m^k}{x^{k+1}}, & x \ge x_m \\ 0, & x < x_m \end{cases}$$
 (2)

где x_m – параметр масштаба, k – второй параметр распределения.

Закон распределения Вейбулла является обобщенным случаем экспоненциально распределения, его плотность вероятности описывается формулой:

$$f_X(x) = \begin{cases} \lambda_0 k(x)^{k-1} e^{-\lambda_0 x^k} & x \ge 0\\ 0, & x < 0 \end{cases}$$
 (3)

где λ_0 – параметр масштаба, k – параметр формы.

4) Сравнение теоретической и экспериментальной последовательности.

Сравнение теоретических и экспериментальной последовательностей проводилось с помощью критерия согласия Пирсона χ^2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ^2 .

Значение критерия находится по формуле:

$$\chi^{2} = n \sum_{i} \frac{(n_{i} / n - P_{i})^{2}}{P_{i}}, \tag{4}$$

где n — общее количество событий в выборке, n_i — количество событий, попадающих в i-ую группу, P_i — теоретически рассчитанное значение для i-й группы.

5) Анализ полученных результатов.

Результаты сравнения показали, что для всех экспериментальных распределений временных интервалов dt между сейсмическими событиями (рис. 1) гипотеза об их описании с помощью распределения Пуассона отвергается с уровнем значимости $\alpha \approx 0$. Таким образом, можно с уверенностью утверждать, что рассматриваемые потоки сейсмических событий не обладают свойствами простейшего потока [2].

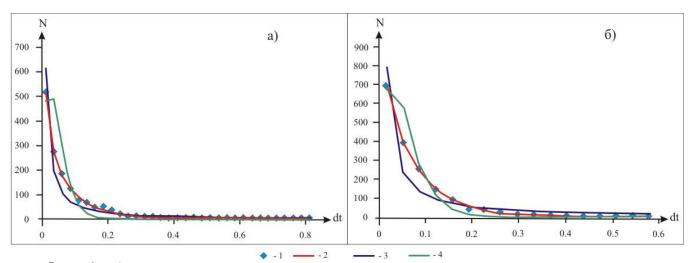


Рис. 1. Аппроксимация экспериментального распределения различными теоретическими законами, а — распределение очагов землетрясений окраины Тихого океана с $M \ge 7$; б — распределение извержений вулканов окраины Тихого океана с $W \ge 2$. 1 — экспериментальная последовательность, 2 — подобранное распределение Вейбулла-Гнеденко, 3 — подобранное распределение Парето, 4 — подобранное распределение Пуассона.

Проверка гипотез о распределении Парето и Вейбулла дала более высокие значения уровня значимости. При этом для подавляющего большинства выборок распределение Вейбулла дает лучшее приближение с уровнем значимости в среднем $\alpha \approx 0.15$. Исключение составляет регион Индонезийской островной дуги, для которого наилучшее приближение дает распределение Парето, в то время как распределение Вейбулла дает схожие результаты или вовсе оказывается неприменимым.

Анализ полученных значений коэффициентов распределения Вейбулла показал, что параметр масштаба в билогарифмических координатах прямо пропорционален числу событий в выборке (значение коэффициента корреляции r=0.95 (рис.2)) и обратно пропорционален значению максимального временного интервала (значение коэффициента корреляции r=0.93 (рис. 2б)), то есть имеет место степенная зависимость параметров.

Для параметра формы таких зависимостей выявить не удалось.

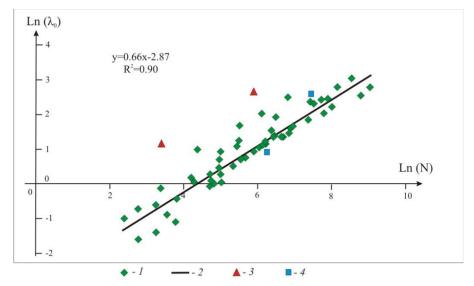


Рис. 2. Зависимость значений параметра масштаба λ_0 распределения Вейбулла от количества событий в выборке N. 1 — значения параметров масштаба для выборок очагов землетрясений, 2 — линейный тренд, 3 — экспериментальные значения, не участвовавшие в построении линии тренда, 4 — значения параметров масштаба для выборок извержений вулканов.

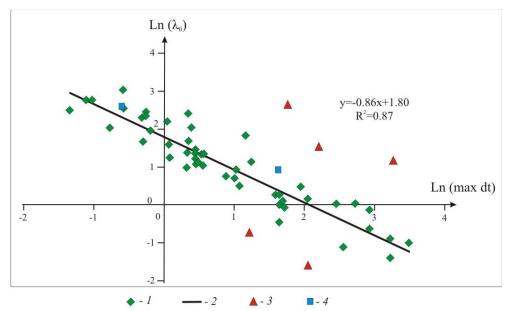


Рис. 3. Зависимость значений параметра масштаба λ_0 распределения Вейбулла от максимального значения интервала в выборке max dt. Пояснения – см. рис. 2.

Следует отметить, что значения параметра масштаба, не укладывающиеся в выявленные закономерности, соответствовали выборкам, для которых распределение Вейбулла или

описывало выборку так же хорошо, как и распределение Парето, или вовсе не могло быть применено.

Распределение Вейбулла классически применяется в теории надежности технических систем для моделирования времени наработки на отказ [1,2]. Применение его для анализа геофизических данных встречается редко, в связи с чем интерпретация полученных результатов требует более детального анализа.

Работа выполнена при финансовой поддержке ДВО РАН (грант 12-III-A-08-164).

Список литературы

- 1. Писаренко В.Ф., Родкин М.В. Распределения с тяжелыми хвостами: приложения к анализу катастроф. М.: ГЕОС, 2007. 242 с. (Вычислительная сейсмология, Вып. 38).
- 2. Учебник по программе STATISTICA. Электронный ресурс. Режим доступа: http://hr-portal.ru/statistica/index.php (дата обращения: 02.09.2014).