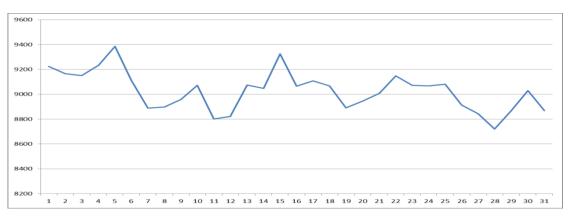
«АНАЛИЗ МОДЕЛЕЙ РЕШЕНИЯ ЗАДАЧ ОПЕРАТИВНОГО ПРОГНОЗИРОВАНИЯ ГАЗОПОТРЕБЛЕНИЯ»

Абрамов А.С. АСБ-10-5, РГУ нефти и газа имени И.М.Губкина

Научный руководитель: Степанкина О.А.

Постановка задачи

Дано:



- объемы потребления газа с интервалом 10 минут,
- характеристики объектов потребления



Закономерности газопотребления

1 . Циклическая составляющая

2. Сезонность потребления

Факторы газопотребления

Хронологические

- специфика выходных и рабочих дней
- время суток

Метеорологические

- Температура воздуха
- Атмосферное давление, влажность воздуха
- Скорость и направление ветра

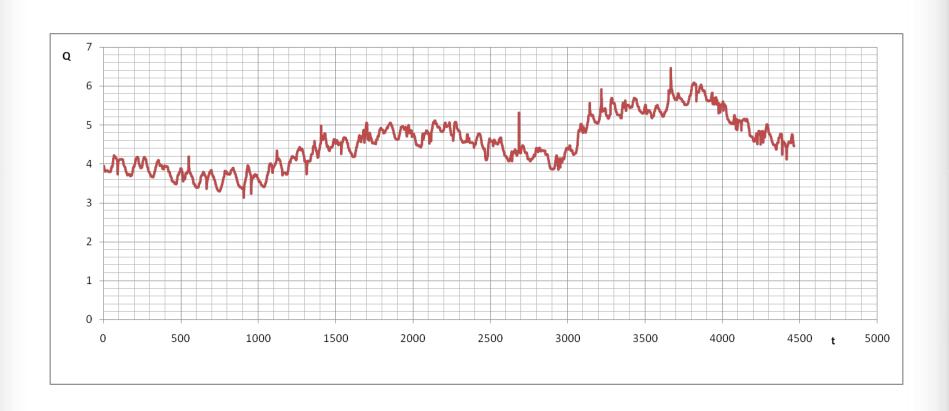
Организационные

- изменения в структуре газопотребления
- изменение технологии производства
- подключение новых потребителей и т.д.

Исходные данные

• Статистика потребления газа по ГРС,тыс.м3.:

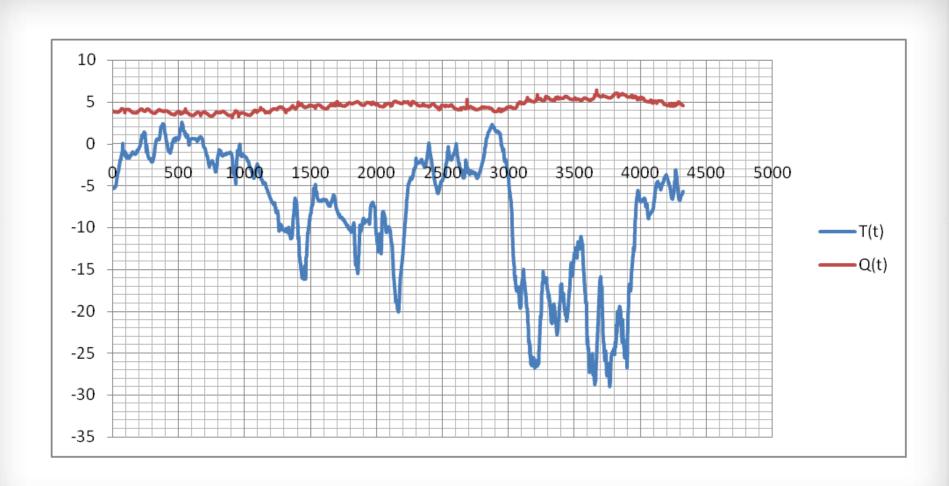
$$Q_1, Q_2, Q_3, \dots, Q_i$$


• Значения температуры воздуха окружающей среды на наблюдаемом отрезке, градус С°:

$$T_1, T_2, T_3, \dots, T_i$$

• По каждому наблюдению данные об атмосферном давлении, мм.рт.ст.:

$$P_1, P_2, P_3, \dots, P_i$$


График ряда Q(t)

Анализ данных

Статистические характеристики	Результаты					
Математическое ожидание	4,	55				
Дисперсия	0,0	65				
Показатель Хэрста	0,83					
Критерий Ирвина (выбросы)	λ табл.=1,1	λрасч.≤1,089				
Критерий Фостера- Стьюарта (тренд)	t кр.= 2,0518 t расч.= 2,7208					
Корреляция ряда с давлением	0,113					
Корреляция ряда с температурой	-0,86					

Графики Q(t) и T(t)

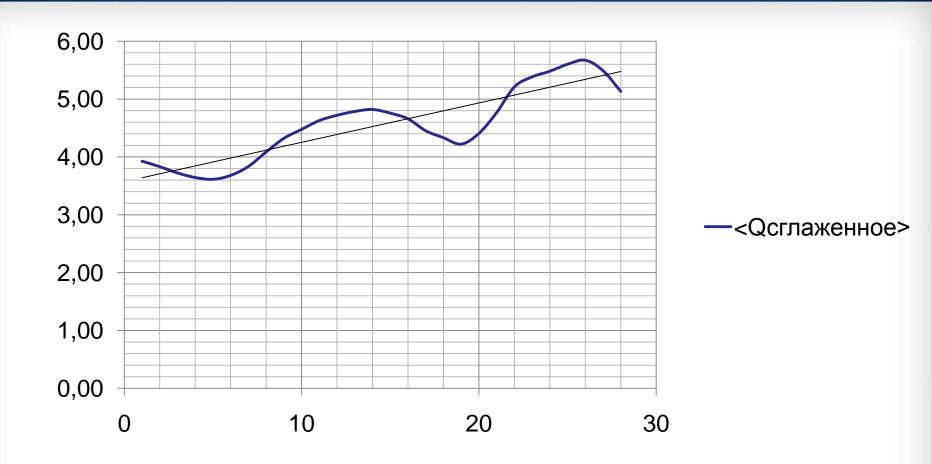
Задача определения тренда сезонной модели

Алгоритм решения:

- 1. Построить график временного ряда.
- 2. Рассчитать автокорреляционную функцию и определить период сезонности.
- 3. Оценить параметры линейного тренда и сезонной компоненты.
- 4. Составить модель вида:

$$Q(t)=Tr(t)+Se(t)+\varepsilon(t),$$

где


Q(t)- временной ряд расхода газа по суткам

Tr(t)- уравнение тренда ряда

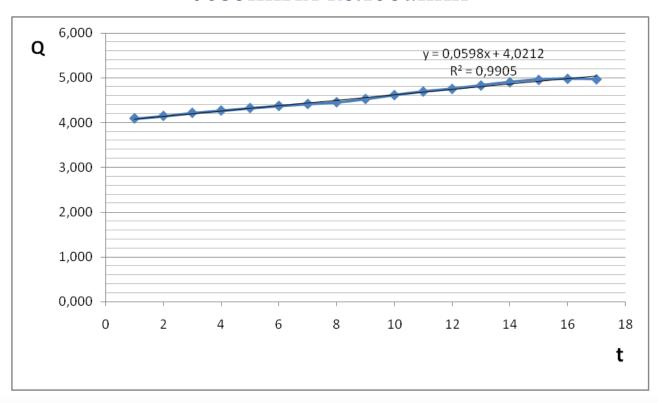
Se(t)- сезонная компонента ряда

ε(t)- шум.

Определение тренда сезонной модели График временного ряда

Определение тренда сезонной модели Автокорреляционная функция

$$r_{1} = \frac{\text{cov}(y_{t-1}; y_{t})}{\sigma_{y_{t-1}}\sigma_{y_{t}}} = \frac{\overline{y_{t-1} \cdot y_{t}} - \overline{y_{t-1}} \cdot \overline{y_{t}}}{\sqrt{\overline{y_{t-1}^{2}} - \overline{y_{t-1}^{2}}} \cdot \sqrt{\overline{y_{t}^{2}} - \overline{y_{t}^{2}}}}$$


$$\overline{y_t} = \frac{1}{n-1} \sum_{t=2}^{n} y_t \qquad \overline{y_{t-1}} = \frac{1}{n-1} \sum_{t=1}^{n-1} y_t$$

• значения коэффициентов корреляции:

r1	r2	r3	r4	r5	r6	r7	r8	r9	r10	r11	r12	r13	r14
0,93	0,79	0,65	0,53	0,36	0,21	0,14	0,20	0,37	0,56	0,73	0,82	0,85	0,88

Определение тренда сезонной модели Оценка параметров линейного тренда Tr(t)

График ряда Qt после сглаживания сезонных колебаний

Определение тренда сезонной модели Оценка сезонной компоненты Se(t)

$$Se(t)=Q(t)-Y(t)$$

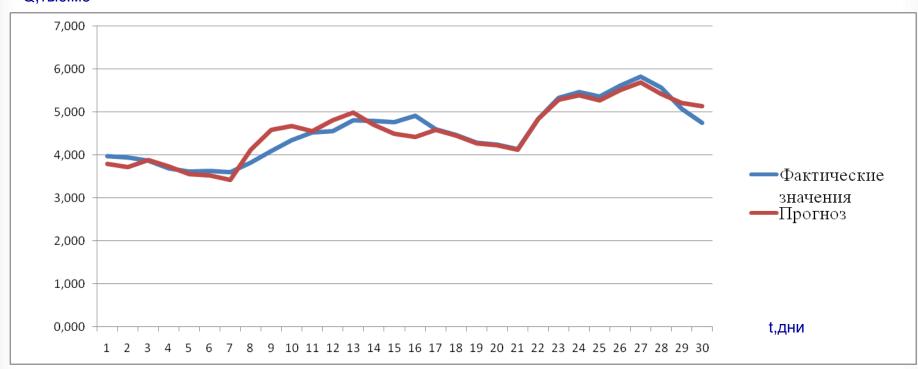
корректировка оценки Se(t); коэффициент корректировки k

$$k_{\kappa op.} = \frac{1}{n} \sum_{i=1}^{n} Se(i)$$

Определение тренда сезонной модели Расчет и корректировка сезонной компоненты Se(t)

Se	1	2	<se></se>	Si скор.
1	0,640	0,109409	0,374	-0,028
2	0,727	-0,224	0,251	-0,151
3	0,364	-	0,364	-0,038
4	0,169	-	0,169	-0,233
5	-0,060	-	-0,060	-0,462
6	-0,147	-	-0,147	-0,550
7	-0,301	-	-0,301	-0,703
8	0,352	-	0,352	-0,050
9	0,757	-	0,757	0,355
10	0,809	-	0,809	0,407
11	0,636	-	0,636	0,233
12	0,830	-	0,830	0,428
13	0,958	-	0,958	0,556
14	0,637	-	0,637	0,235

Определение тренда сезонной модели Оценка ε(t)


$$\varepsilon(t) = Q(t) - Tr^*(t) - Se(t),$$

где Tr*(t)- уравнение тренда полученное из системы уравнений:

$$\begin{cases} b = \frac{\overline{Y \cdot t} - \overline{Y} \cdot \overline{t}}{\overline{t^2} - \overline{t}^2} \\ a = \overline{Y} - b \cdot \overline{t} \\ Tr = a + bt \end{cases}$$

Прогноз потребления газа

Q,тыс.м3

Анализ результатов расчета

	Дата										
Показатель	t	t+1	t+2	t+3	t+4	t+5	t+6				
Средняя относительная ошибка, %	3,4	3,3	3,2	3,2	3,1	3,1	3,4				
Среднеквадратическое отклонение, тыс. м3.	0,51	0,54	0,56	0,60	0,63	0,65	0,65				

Модель «Тейла-Вейджа».

Уравнение модели:

$$Q_t = a_{1,t} + g_t + \varepsilon_t;$$

$$a_{1,t} = a_{1,t-1} + a_{2,t},$$

где

Q(t)— величина уровня процесса после элиминирования сезонных колебаний;

a(t)— аддитивный коэффициент роста;

g(t)— аддитивный коэффициент сезонности;

 $\varepsilon(t)$ — белый шум.

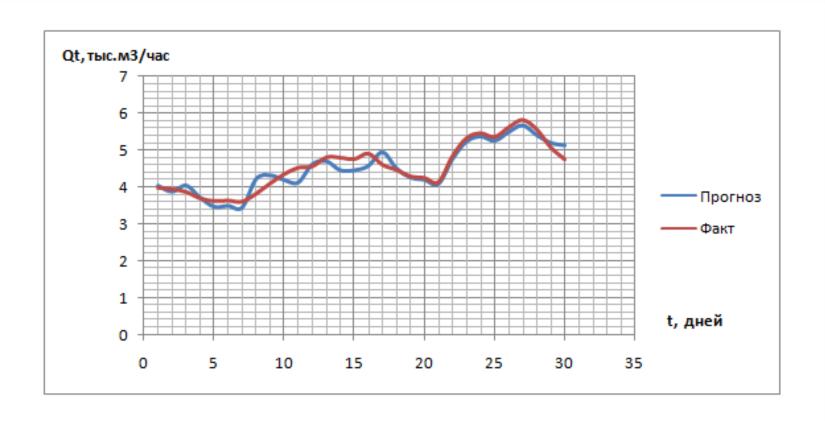
Модель «Тейла-Вейджа».

Процедура адаптации:

$$\begin{split} \hat{a}_{1,t} &= \alpha_1 \cdot (Q_t - g_{t-l}) + (1 - \alpha_1) \cdot \left(\hat{a}_{1,t-1} + \hat{a}_{2,t-1}\right); \\ \hat{a}_{2,t} &= \alpha_2 \cdot \left(\hat{a}_{1,t} - \hat{a}_{1,t-1}\right) + (1 - \alpha_2) \cdot \hat{a}_{2,t-1}; \\ \hat{g}_t &= \alpha_3 \cdot \left(Q_t - \hat{a}_{1,t}\right) + (1 - \alpha_3) \cdot g_{t-l}, \end{split}$$


где параметры сглаживания удовлетворяют условию:

$$0{<}\alpha_1,\alpha_2,\alpha_3{<}1$$


Процедура прогнозирования:

$$Q^{\mathrm{pacq.}}_{\phantom{\mathrm{q}}t} = \hat{a}_{\mathrm{1},t} + \tau \cdot \hat{a}_{\mathrm{2},t} + \hat{g}_{t+\tau-l}$$

Прогнозирование расхода газа

Прогнозирование расхода газа

Анализ расчетов по модели «Тейла-Вейджа»

	Дата										
Показатель	t	t+1	t+2	t+3	t+4	t+5	t+6				
Средняя относительная ошибка, %	3,6	3,5	3,5	3,4	3,4	3,4	3,5				
Среднеквадратическое отклонение, тыс. м3.	0,51	0,53	0,57	0,61	0,63	0,63	0,63				

Многофакторная регрессия с памятью

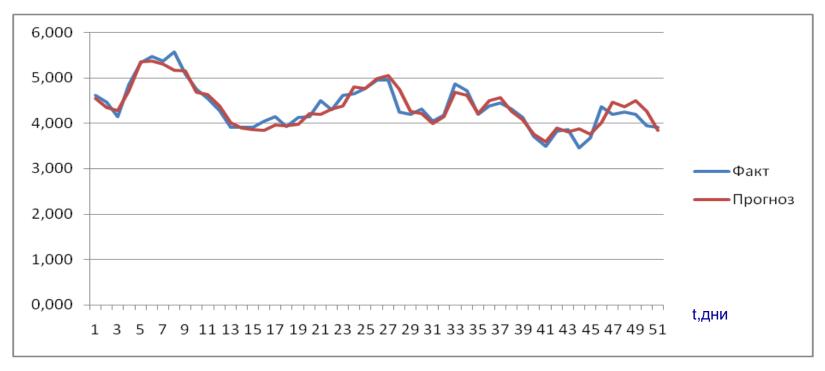
Дано:

- Q(t-1), Q(t-2), Q(t-3)- значения расхода газа, отсортированные по двум типам дней (рабочие и выходные дни)
- T(t)- значение температур по типам дней в момент прогноза

Задача:

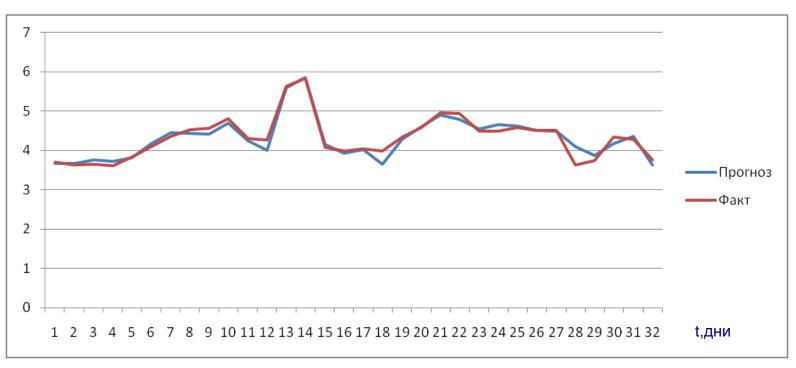
установить отношение Q(t) = F(Tt,Qt-1,Qt-2,Qt-3,a,b,c,d).

Формула: Ft=aTt+bQt-1+cQt-2+dQt-3+Et


Классический подход:

параметры модели (a,b,c,d) находим МНК:

$$\sum_{i=1}^{N} (Q_i - F(T_i, Q_{i-1}, Q_{i-2}, Q_{i-3}, a, b, c, d))^2 \to min_{a,b,c,d}$$


Прогноз по рабочим дням

Q,тыс.м3/ч.

Прогноз по выходным и праздничным дням

Q,тыс.м3/ч.

Анализ результатов расчета по многофакторной модели, рабочий день

	Дата									
Показатель	t	t+1	t+2	t+3	t+4	t+5	t+6			
Средняя относительная ошибка, %	2,6	2,7	2,8	2,8	2,9	3,0	3,0			
Среднеквадратичное отклонение, тыс. м3.	0,48	0,47	0,47	0,46	0,46	0,45	0,46			

Анализ результатов расчета по многофакторной модели, выходной день

	Дата									
Показатель	t	t+1	t+2	t+3	t+4	t+5	t+6			
Средняя относительная ошибка, %	2,1	2,1	2,0	2,4	2,5	2,5	2,5			
Среднеквадратичное отклонение, тыс. м3.	0,56	0,59	0,60	0,59	0,58	0,57	0,56			

Выводы

- ✓ Проведен анализ факторов, влияющих на газопотребление; анализ показал зависимость газопотребления преимущественно от двух видов факторов: метеорологических и хронологических;
- ✓ основными параметрами прогноза стали: температура окружающей среды и значения расхода газа для различных типов дней;
- ✓ Построены тренд-сезонная, адаптивная и регрессионная модели оперативного прогнозирования газопотребления; в результате исследования моделей прогноза была выбрана многофакторная регрессионная модель.

Благодарим за внимание!

РГУ нефти и газа имени И.М. Губкина Москва 2014