0.1. Латипов А.Р. Многосеточные методы конечных элементов для решения задач оптимизации разработки газовых месторождений

В работе представлены результаты исследования по оптимизации разработки газового месторождения с учетом геологических факторов и фильтрационноемкостных параметров. В первой части работы предложен метод оптимального проектирования сетки скважин на основе шестиугольной аппроксимации призабойной зоны отбора газа, которая может быть адаптивно измельчена в зависимости от геометрии и фильтрационно-емкостных параметров пласта. Для решения этой задачи методами целочисленного программирования использован пакет GROBID. Предлагаемый в работе подход отличается новизной и позволяет учитывать опыт экспертов по разработке месторождений. Во второй части предложен метод оптимального выбора дебитов Q_i , обеспечивающих плановую добычу газа $Q_0 = \sum_{i=1}^N Q_i$ при условии непроницаемости внешнего контура $\partial\Omega$ и заданном начальном (t=0)распределении давления в резервуаре месторождения $\overline{\Omega}$. В интервале управления (0,T) распределение давления P(x,t) в момент $t\in(0,T)$ на $\overline{\Omega}$, т.е. для всех $x \in \overline{\Omega}$, определяется нелинейным уравнением параболического типа

$$\partial P(x,t)/\partial t = \partial/\partial x(\lambda(P)\partial P(x,t)/\partial x).$$

В качестве критерия оптимизации целесообразно выбрать - минимальные отклонения забойных давлений от среднего значения по $\overline{\Omega}$ (технологические требования). Для решения задачи предложены методы поиска экстремума с иерархическим распараллеливанием вычислений, основанные на принципах оптимальности. Интеграция задач проектирования размещения скважин и управления режимами отбора газа на них позволяет проводить комплексный анализ и оптимизацию разработки месторождения. Использование шестиугольных конечных на самой грубой сетке элементов (вместо традиционных прямоугольных, например [1]) при решении этих задач обеспечивает равномерное покрытие резервуара месторождений и требуемую эффективность вычислительных методов.

Hаучный руководитель — κ .т.н. Aхметзянов A.B.

Список литературы

[1] LATIPOV A., ERMOLAEV A. Decomposition of the Model of Optimal Well Placement at Gas Fields // Preprints of the 22nd IFAC World Congress Yokohama, Japan, July 9-14, 2023, P. 2959–2964.