Pyatkov S.G. Shilenkov D.V.
Inverse problems of recovering surface fluxes from pointwise measurements
Reporter: Pyatkov S.G.
\documentclass[10pt]{article}
	\usepackage{amsmath}
	\usepackage{amsfonts,amssymb}
	\usepackage{amsthm}
	\usepackage[active]{srcltx}
\usepackage[cp1251]{inputenc}
\usepackage[final]{graphicx}
	\newenvironment{ltrtr}{
	\vspace{0.5\baselineskip} \noindent {\footnotesize{REFERENCES}} \vspace{-0.5\baselineskip}
	\begin{enumerate}
	\partopsep=0pt\topsep=0pt\itemsep=1pt\parsep=0pt\parskip=0pt}{\end{enumerate}}
	
	\textwidth          13cm \textheight         18cm \topmargin   0mm
	\oddsidemargin       5mm
\begin{document}
	
	\setcounter{figure}{0} \setcounter{equation}{0}
	\setcounter{table}{0} \setcounter{footnote}{0}
	\begin{center}
	\title{}{\bf Inverse problem of
	recovering surface fluxes from
	pointwise measurements}
\author{}{Pyatkov$^{1}$ S.G., Shilenkov$^2$ D.V.}
	$^{1}$ {\it Yugra State University,  Khanty-Mansiysk; \\
	  Sobolev Institute of Mathematics, Novosibirsk \\  pyatkov@math.nsc.ru }
	$^{2}$ {\it Yugra State University, Khanty-Mansiysk\\
	deoltesh.projects@yandex.ru}
	\end{center}
	
	Under
	consideration is the parabolic equation
	        \begin{equation}\label{e1}
	Mu= u_t+Lu=f(t,x), \ \ (t,x)\in Q = (0,T)\times G,\ T\leq \infty,
	    \end{equation}
	where  $Lu=-\Delta u + \sum_{i=1}^n a_{i}(x)u_{x_{i}} +
	a_{0}(x)u$, $G$ is a domain in ${\mathbb R}^n$ with boundary
	$\Gamma\in C^{2}$, and  $n=2,3$. The equation \eqref{e1} is
	furnished with the initial-boundary conditions
	    \begin{equation}\label{e2}
	    Bu|_{S}=g(t,x)\ \ (S=(0,T) \times \Gamma),\ \ u|_{t=0}=u_{0}(x),
	    \end{equation}
	where $Bu=\frac{\partial u}{\partial \nu}    +\sigma(x)u$, with
	$\nu$ the outward unit normal to $\Gamma$, and, respectively,
	with the overdetermination conditions
	    \begin{equation}\label{e33}
	u(t,b_{i})=\psi_{i}(t)\ (i=1,2,\ldots,r),
	\end{equation}
	where  $\{b_{i}\}_{i=1}^{r}$ is a collection of points lying in
	$G$. The problem is to find a solution to the equation
	\eqref{e1} satisfying \eqref{e2}-\eqref{e33} and an unknown function
	    $g(t,x)=\sum_{j=1}^{r}\alpha_{i}(t)\Phi_{i}(x)$,
	where the functions $\Phi_{i}(x)$ are given and $\alpha_{i}$
	are unknowns.
	Inverse problems of recovering the above type  are
	classical. The arise in many different problems of mathematical
	physics,  in particular, in the heat and mass transfer theory,
	diffusion, filtration,  and ecology.
	In this article we describe a new approach to the existence
	theory of solutions to this problem and establish the
	corresponding existence and uniqueness theorems.
	Sharp conditions on the data
	ensuring existence and uniqueness  in Sobolev
	classes  are exposed. They are smoothness conditions on the
	data, geometric conditions on the location of measurement
	points, and the boundary of a domain.  The proof relies on
	asymptotics of fundamental solutions to the corresponding
	elliptic problems and the Laplace transform. The problem is reduced to a linear algebraic system
	with a nondegerate matrix.
	We hope that
	these results can be used in developing new numerical
	algorithms for solving the problem.
\end{document}
To reports list




